Tiempo de retención y capacidad de transporte de los remolinos del noroeste del golfo de México

Contenido principal del artículo

Fernando José Bello-Fuentes
Héctor García-Nava
Fernando Andrade-Canto
Reginaldo Durazo
Rubén Castro
Ismael Yarbuh

Resumen

Los remolinos son estructuras transitorias que influyen en gran medida en la circulación promedio del océano. Modifican la distribución de masa y propiedades como calor, sal, clorofila y partículas inertes. La capacidad que tienen los remolinos para transportar propiedades o partículas depende de su capacidad de retención. En este estudio se identificaron y caracterizaron los remolinos de mesoescala del noroeste del golfo de México (NOGM) a través de un método lagrangiano que permite evaluar el tiempo de retención y la fracción de masa que pueden retener y transportar. Para el análisis, se utilizaron datos diarios de altimetría de 1993 a 2016. En el periodo de estudio se detectaron un total de 254 remolinos, 73 anticiclones y 181 ciclones. Se identificó una región (94.75º W, 26.75º N) donde ocurren ~30% del total de los remolinos ciclónicos detectados entre las isóbatas de 1,000 y 2,500 m. En promedio, el radio de los remolinos fue de ~40 km para la isobata <1,000 m y ~70 km para la isobata >2,500 m. Los remolinos de mesoescala del NOGM pueden trasportar ~60% de la masa que contenían al momento de ser detectados. En promedio, el transporte de masa ocurrió por 33 d para los ciclones y por 26 d para los anticiclones. Rara vez ocurrió por 60 d o más.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Bello-Fuentes, F. J., García-Nava, H., Andrade-Canto, F., Durazo, R., Castro, R., & Yarbuh, I. (2021). Tiempo de retención y capacidad de transporte de los remolinos del noroeste del golfo de México. Ciencias Marinas, 47(2), 71–88. https://doi.org/10.7773/cm.v47i2.3116
Sección
Artículo de investigación

Métrica

Citas

Abernathey R, Haller G. 2018. Transport by Lagrangian vortices in the eastern Pacific. J Phys Oceanogr. 48(3):667–685.

https://doi.org/10.1175/JPO-D-17-0102.1

Andrade-Canto F, Sheinbaum J, Zavala-Sansón L. 2013. A Lagrangian approach to the Loop Current eddy separation. Nonlinear Proc Geoph. 20(1):85–96.

https://doi.org/10.5194/npg-20-85-2013

Beron-Vera FJ, Olascoaga MJ, Goni GJ. 2008. Oceanic mesoscale eddies as revealed by Lagrangian coherent structures. Geophys Res Lett. 35(12):L12603.

https://doi.org/10.1029/2008GL033957

Beron-Vera FJ, Olascoaga MJ, Haller G, Farazmand M, Triñanes J, Wang Y. 2015. Dissipative inertial transport patterns near coherent Lagrangian eddies in the ocean. Chaos: An Interdisciplinary Journal of Nonlinear Science. 25(8):087412.

https://doi.org/10.1063/1.4928693

Beron-Vera FJ, Wang Y, Olascoaga MJ, Goni GJ, Haller G. 2013. Objective detection of oceanic eddies and the Agulhas Leakage. J Phys Oceanogr. 43(7):1426–1438.

https://doi.org/10.1175/JPO-D-12-0171.1

Biggs DC, Fargion GS, Hamilton P, Leben RR. 1996. Cleavage of a Gulf of Mexico loop Current eddy by a deep water cyclone. J Geophys Res: Oceans. 101(C9):20629–20641.

https://doi.org/10.1029/96JC01078

Cetina-Heredia P, Roughan M, van Sebille E, Keating S, Brassington GB. 2019. Retention and leakage of water by mesoscale eddies in the East Australian Current System. J Geophys Res: Oceans. 124(4):2485–2500.

https://doi.org/10.1029/2018JC014482

Chelton DB, Gaube P, Schlax MG, Early JJ, Samelson RM. 2011a. The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll. Science. 334(6054):328–332.

https://10.1126/science.1208897

Chelton DB, Schlax MG, Samelson RM. 2011b. Global observations of nonlinear mesoscale eddies. Prog Oceanogr. 91(2):167–216.

https://doi.org/10.1016/j.pocean.2011.01.002

Condie S, Condie R. 2016. Retention of plankton within ocean eddies. Global Ecol Biogeogr. 25(10):1264–1277.

https://doi.org/10.1111/geb.12485

Dong C, Liu Y, Lumpkin R, Lankhorst M, Chen D, McWilliams JC, Guan Y. 2011. A scheme to identify loops from trajectories of oceanic surface drifters: An application in the Kuroshio Extension region. J Atmos Ocean Tech. 28(9):1167–1176.

https://doi.org/10.1175/JTECH-D-10-05028.1

d’Ovidio F, De Monte S, Della-Penna A, Cotté C, Guinet C. 2013. Ecological implications of eddy retention in the open ocean: a Lagrangian approach. J Phys A: Math Theor. 46(25):254023.

https://doi.org/10.1088/1751-8113/46/25/254023

Elliott BA. 1982. Anticyclonic rings in the Gulf of Mexico. J Phys Oceanogr. 12(11):1292–1309.

https://doi.org/10.1175/1520-0485(1982)0122.0.CO;2

Haller G, Hadjighasem A, Farazmand M, Huhn F. 2016. Defining coherent vortices objectively from the vorticity. J Fluid Mech. 795:136–173.

https://doi.org/10.1017/jfm.2016.151

Hamilton P. 1992. Lower continental slope cyclonic eddies in the central Gulf of Mexico. J Geophys Res: Oceans. 97(C2):2185–200.

https://doi.org/10.1029/91JC01496

Hamilton P. 2007. Eddy statistics from Lagrangian drifters and hydrography for the northern Gulf of Mexico slope. J Geophys Res: Oceans. 112(C9):C09002.

https://doi.org/10.1029/2006JC003988

Hamilton P, Berger TJ, Johnson W. 2002. On the structure and motions of cyclones in the northern Gulf of Mexico. J Geophys Res: Oceans. 107(C12):3208.

https://doi.org/10.1029/1999JC000270

Hamilton P, Lee TN. 2005. Eddies and jets over the slope of the northeast Gulf of Mexico. In: Sturgers W, Lugo-Fernandez A (eds.), Circulation in the Gulf of Mexico: Observations and Models. Vol. 161, Geophysical Monograph Series. Washington DC: American Geophysical Union. p. 123–142.

https://doi.org/10.1029/161GM010

Hamilton P, Fargion GS, Biggs DC. 1999. Loop Current eddy paths in the western Gulf of Mexico. J Phys Oceanogr. 29(6):1180–1207.

https://doi.org/10.1175/1520-0485(1999)0292.0.CO;2

Leben RR. 2005. Altimeter-derived Loop Current metrics, in Circulation in the Gulf of Mexico: Observations and Models. In: Sturges W, Lugo-Fernandez A (eds.), Circulation in the Gulf of Mexico: Observations and Models. Vol. 161, Geophysical Monograph Series. Washington DC: American Geophysical Union. p. 181–202.

https://doi.org/10.1029/161gm15

Le Vu B, Stegner A, Arsouze T. 2018. Angular momentum eddy detection and tracking algorithm (AMEDA) and its application to coastal eddy formation. J Atmos Ocean Tech. 35(4):739–762.

https://doi.org/10.1175/JTECH-D-17-0010.1

Lipphardt BL, Poje AC, Kirwan AD, Kantha L, Zweng M. 2008. Death of three Loop Current rings. J Mar Res. 66(1):25–60.

https://doi.org/10.1357/002224008784815748

Lobel PS, Robinson AR. 1988. Larval fishes and zooplankton in a cyclonic eddy in Hawaiian waters. J Plankton Res. 10(6):1209–1223.

https://doi.org/10.1093/plankt/10.6.1209

Merrell WJ Jr, Morrison JM. 1981. On the circulation of the western Gulf of Mexico with observations from April 1978. J Geophys Res: Oceans. 86(C5):4181–4185.

Merrell WJ Jr, Vázquez AM. 1983. Observations of changing mesoscale circulation patterns in the western Gulf of Mexico. J Geophys Res: Oceans. 88(C12):7721–7723.

https://doi.org/10.1029/JC088iC12p07721

Meunier T, Pallás-Sanz E, Tenreiro M, Portela E, Ochoa J, Ruiz-Angulo A, Cusí S. 2018. The vertical structure of a Loop Current eddy. J Geophys Res: Oceans. 123(9):6070–6090. https://doi.org/10.1029/2018jc013801

Nowlin WD Jr, Jochens AE, Reid RO, DiMarco SF. 1998. Texas– Louisiana shelf circulation and transport processes study: synthesis report. Vol. 2, Appendices. New Orleans (LA): US Department of the Interior, Minerals Management Services, Gulf of Mexico OCS Region. 502 p. OCS Study, MMS 98-0036.

Oey LY, Ezer T, Lee HC. 2005. Loop Current, rings and related circulation in the Gulf of Mexico: A review of numerical models and future challenges. In: Sturges W, Lugo-Fernandez (eds.), Circulation in the Gulf of Mexico: Observations and Models. Vol. 161, Geophysical Monograph Series. Washington DC: American Geophysical Union. p. 31–56.

https://doi.org/10.1029/161GM04

Ohlmann JC, Niiler PP. 2005. Circulation over the continental shelf in the northern Gulf of Mexico. Prog Oceanogr. 64(1):45–81.

https://doi.org/10.1016/j.pocean.2005.02.001

Ohlmann JC, Niiler PP, Fox CA, Leben RR. 2001. Eddy energy and shelf interactions in the Gulf of Mexico. J Geophys Res: Oceans. 106(C2):2605–2620.

https://doi.org/10.1029/1999JC000162

Okubo A. 1970. Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences. Deep Sea Res Oceanogr Abstr. 17(3):445–454.

https://doi.org/10.1016/0011-7471(70)90059-8

Sánchez-Velasco L, Lavín MF, Jiménez-Rosenberg SPA, Godínez VM, Santamaría-del-Angel E, Hernández-Becerril DU. 2013. Three-dimensional distribution of fish larvae in a cyclonic eddy in the Gulf of California during the summer. Deep Sea Res Part I. 75:39–51.

https://doi.org/10.1016/j.dsr.2013.01.009

Smith LC, Smith M, Ashcroft P. 2011. Analysis of environmental and economic damages from British Petroleum’s Deepwater Horizon Oil Spill. Albany Law Review. 74(1):563–585.

http://dx.doi.org/10.2139/ssrn.1653078

Tenreiro M, Candela J, Sanz EP, Sheinbaum J, Ochoa J. 2018. Near-surface and deep circulation coupling in the western Gulf of Mexico. J Phys Oceanogr. 48(1):145–161.

https://doi.org/10.1175/JPO-D-17-0018.1

Vidal VMV, Vidal FV, Hernández AF, Meza E, Zambrano L. 1994. Winter water mass distributions in the western Gulf of Mexico affected by a colliding anticyclonic ring. J Oceanogr. 50(5):559–588.

https://doi.org/10.1007/bf02235424

Vidal VMV, Vidal FV, Pérez-Molero JM. 1992. Collision of a Loop Current anticyclonic ring against the continental shelf slope of the western Gulf of Mexico. J Geophys Res: Oceans. 97(C2):2155–2172.

https://doi.org/10.1029/91JC00486

Wang Y, Beron-Vera FJ, Olascoaga MJ. 2016. The life cycle of a coherent Lagrangian Agulhas ring. J Geophys Res: Oceans. 121(6):3944–3954.

https://doi.org/10.1002/2015JC011620

Wang Y, Olascoaga MJ, Beron-Vera FJ. 2015. Coherent water transport across the South Atlantic. Geophys Res Lett. 42(10):4072–4079.

https://doi.org/10.1002/2015GL064089

Weiss J. 1991. The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Physica D: Nonlinear Phenomena. 48:273–294.

https:doi.org/10.1016/0167-2789(91)90088-Q

Zavala-Hidalgo J, Romero-Centeno R, Mateos-Jasso A, Morey SL, Martínez-López B. 2014. The response of the Gulf of Mexico to wind and heat flux forcing: What has been learned in recent years? Atmósfera. 27(3):317–334.

https://doi.org/10.1016/S0187-6236(14)71119-1

Artículos más leídos del mismo autor/a

<< < 1 2