The good and the better, sampling tropical intertidal rock pool fishes: a comparison between visual census vs. rock pool bailing method

Main Article Content

Saúl González-Murcia
https://orcid.org/0000-0002-7431-2686
Raquel Alvarado-Larios
https://orcid.org/0000-0001-8322-287X
Jennifer Guerra
https://orcid.org/0000-0002-3434-4405
Murray Logan
https://orcid.org/0000-0001-5102-3972

Abstract

Numerous sampling methods have been applied to study intertidal rock pool fishes. There is limited information comparing the performance and suitability of such methods, which complicates comparisons between studies. We compared the performance of the bailing and visual census methods in 10 rock pools to quantify abundance, species richness, and structure of fish assemblages in rock pool intertidal systems considering fish residency affinities, rock pool volume, and substratum rugosity. Sampling was conducted 13 times across the complete set of 10 rock pools from June to December, 2018. Each of the pools was sampled with a visual census and then the bailing method. A sampling event was defined as the process of conducting both a visual and a bailing survey in a single rock pool. In total, 1,749 individuals of 14 species were detected using the bailing method, whereas 438 individuals of 8 species were recorded via visual census. The bailing method yielded higher abundance and species richness of resident, opportunist, and transient fish than the visual census. The detection of individuals and species showed a positive association with rock pool volume and negative association with substratum rugosity for both methods. In 32 sampling events, the bailing method detected fish correcting reports of fish absence (false negatives) recorded with the visual census. For the bailing method, resident fishes dominated the fish assemblage, whereas, for the visual census, resident and opportunist fishes contributed similarly to the community.

Downloads

Download data is not yet available.

Article Details

How to Cite
González-Murcia, S., Alvarado-Larios, R., Guerra, J., & Logan, M. (2023). The good and the better, sampling tropical intertidal rock pool fishes: a comparison between visual census vs. rock pool bailing method. Ciencias Marinas, 49. https://doi.org/10.7773/cm.y2023.3404
Section
Research Article

Metrics

References

Ackerman JL, Bellwood DR 2000. Reef fish assemblages: a re-evaluation using enclosed rotenone stations. Mar Ecol Prog Ser. 206:227-237. https://doi:10.3354/meps206227 DOI: https://doi.org/10.3354/meps206227

Ackerman JL, Bellwood DR. 2002. Comparative efficiency of clove oil and rotenone for sampling tropical reef fish assemblages. J Fish Biol. 60:893-901. https://doi.org/10.1111/j.1095-8649.2002.tb02416.x DOI: https://doi.org/10.1111/j.1095-8649.2002.tb02416.x

Almada VC, Faria C. 2004. Temporal variation of rocky intertidal resident fish assemblages – patterns and possible mechanisms with a note on sampling protocols. Rev Fish Biol Fisher. 14:239-250. https://doi.org/10.1007/s11160-004-6750-7 DOI: https://doi.org/10.1007/s11160-004-6750-7

Alzate A, Zapata FA, Giraldo A. 2014. A comparison of visual and collection-based methods for assessing community structure of coral reef fishes in the Tropical Eastern Pacific. Rev Biol Trop. 62(S1):359-371. https://doi.org/10.15517/rbt.v62i0.16361 DOI: https://doi.org/10.15517/rbt.v62i0.16361

Andrades R, Machado FS, Reis-Filho JA, Macieira RM, Giarrizzo T. 2018. Intertidal Biogeographic Subprovinces: local and regional factors shaping fish assemblages. Front Mar Sci. 5:412. https://doi.org/10.3389/fmars.2018.00412 DOI: https://doi.org/10.3389/fmars.2018.00412

Arndt E, Fricke R. 2019. Intertidal fishes of Mauritius with special reference to shallow tidepools. Biodivers Data J. 7:e36754. https://doi.org/10.3897/BDJ.7.e36754 DOI: https://doi.org/10.3897/BDJ.7.e36754

Barreiros JP, Bertoncini Á, Machado L, Hostim-Silva M, Santos RS. 2004. Diversity and seasonal changes in the ichthyofauna of rocky tidal pools from Praia Vermelha and São Roque, Santa Catarina. Braz Arch Biol Technol. 47(2):291-299. https://doi.org/10.1590/S1516-89132004000200017 DOI: https://doi.org/10.1590/S1516-89132004000200017

Bellwood DR, Hemingson CR, Tebbett SB. 2020. Subconscious biases in coral reef fish studies. BioScience.70(7):621-627. https://doi.org/10.1093/biosci/biaa062 DOI: https://doi.org/10.1093/biosci/biaa062

Brock RE. 1982. A critique of the visual census method for assessing coral reef fish Populations. Bull Mar Sci. 32(1):269-276. https://www.ingentaconnect.com/content/umrsmas/bullmar/1982/00000032/00000001/art00019?crawler=true.

Castellanos-Galindo GA, Giraldo A, Rubio EA. 2005. Community structure of an assemblage of tidepool fishes on a tropical eastern Pacific rocky shore, Colombia. J Fish Biol. 67(2):392-408. https://doi.org/10.1111/j.0022-1112.2005.00735.x DOI: https://doi.org/10.1111/j.0022-1112.2005.00735.x

Castellanos-Galindo GA, Giraldo A, Zapata FA. 2014. Tidepool fish assemblages of Gorgona Island, Colombian Pacific coast: a local and regional comparison. Rev Biol Trop. 62(S1):373-390. https://doi.org/10.15517/RBT.V62I0.16362 DOI: https://doi.org/10.15517/rbt.v62i0.16362

Christensen MS, Winterbottom R. 1981. A correction factor for, and its application to, visual censuses of littoral fish. S Afr J Zool. 16(2):73-79. https://doi.org/10.1080/02541858.1981.11447736 DOI: https://doi.org/10.1080/02541858.1981.11447736

Clarke KR, Somerfield PJ, Chapman MG. 2006. On resemblance measures for ecological studies, including taxonomic dissimilarities and a zero-adjusted Bray–Curtis coefficient for denuded assemblages. J Exp Mar Biol Ecol. 330(1):55-80. https://doi.org/10.1016/j.jembe.2005.12.017 DOI: https://doi.org/10.1016/j.jembe.2005.12.017

Colton MA, Swearer SE. 2010. A comparison of two survey methods: differences between underwater visual census and baited remote underwater video. Mar Ecol Prog Ser. 400:19-36. https://doi.org/10.3354/meps08377 DOI: https://doi.org/10.3354/meps08377

Cunha FEA, Monteiro-Neto C, Nottingham MC. 2007. Temporal and spatial variations in tidepool fish assemblages of the northeast coast of Brazil. Biota Neotrop. 7(1):bn03307012007. https://doi.org/10.1590/S1676-06032007000100016 DOI: https://doi.org/10.1590/S1676-06032007000100016

Daniel MJ, Boyden, CR 1975. Diurnal variations in physico-chemical conditions within intertidal rockpools. Fld Stud. 4:161-176.

Davis JLD. 2000. Spatial and seasonal patterns of habitat partitioning in a guild of southern California tidepool fishes. Mar Ecol Prog Ser. 196:253-268. https://doi.org/10.3354/meps196253 DOI: https://doi.org/10.3354/meps196253

Davis TR, Larkin MF, Harasti D. 2018. Application of non-destructive methods for assessing rock pool fish assemblages on Lord Howe Island, Australia. Reg Stud Mar Sci. 24:251-259. https://doi.org/10.1016/j.rsma.2018.09.002 DOI: https://doi.org/10.1016/j.rsma.2018.09.002

De Cáceres M, Legendre P. 2009. Associations between species and groups of sites: indices and statistical inference. Ecology. 90(12):3566-3574. https://doi.org/10.1890/08-1823.1 DOI: https://doi.org/10.1890/08-1823.1

De Cáceres M, Legendre P, Moretti M. 2010. Improving indicator species analysis by combining groups of sites. Oikos. 119(10):1674-1684. https://doi.org/10.1111/j.1600-0706.2010.18334.x DOI: https://doi.org/10.1111/j.1600-0706.2010.18334.x

Dorman SR, Harvey ES, Newman SJ. 2012. Bait effects in sampling coral reef fish assemblages with stereo-BRUVs. PLoS One. 7:e41538. https://doi.org/10.1371/journal.pone.0041538 DOI: https://doi.org/10.1371/journal.pone.0041538

Faria C, Almada V. 1999. Variation and resilience of rocky intertidal fish in western Portugal. Mar Ecol Prog Ser. 184:197-203. https://doi.org/10.3354/meps184197 DOI: https://doi.org/10.3354/meps184197

Galvan DE, Venerus LA, Irigoyen AJ. 2009. The reef-fish fauna of the Northern Patagonian Gulfs, Argentina, South-western Atlantic. Open Fish Sci J. 2(1):90-98. http://doi.org/10.2174/1874401X00902010090 DOI: https://doi.org/10.2174/1874401X00902010090

Gibson RN. 1999. Methods for studying intertidal fishes. In: Horn MH Martin KLM, Chotkowski MA (eds.), Biology of intertidal fishes: Life in two Worlds. San Diego (CA): Academic Press. p. 7-25. DOI: https://doi.org/10.1016/B978-012356040-7/50003-2

Gibson RN, Yoshiyama RM. 1999. Intertidal fish communities. In: Horn MH, Martin KLM, Chotkowski MA (eds.), Biology of intertidal fishes: Life in two Worlds. San Diego (CA): Academic Press. p. 264-296. DOI: https://doi.org/10.1016/B978-012356040-7/50014-7

Godinho WO, Lotufo TMC. 2010. Local v. microhabitat influences on the fish fauna of tidal pools in north-east Brazil. J Fish Biol. 76(3):487-501. https://doi.org/10.1111/j.1095-8649.2009.02501.x DOI: https://doi.org/10.1111/j.1095-8649.2009.02501.x

González-Murcia S, Marín-Martínez C, Ayala-Bocos A. 2012. Intertidal rock pool icthyofauna of El Pital, La Libertad, El Salvador. Check List. 8(6):1216-1219. https://doi.org/10.15560/8.6.1216 DOI: https://doi.org/10.15560/8.6.1216

González-Murcia S, Chicas Batres F, Lovo MH. 2016. Community structure and height distribution of intertidal rock poolfish in Los Cóbanos, El Salvador. Pan-Am J Aquat Sci. 11(3):227-242; [accessed 2023 January 24]. https://panamjas.org/pdf_artigos/PANAMJAS_11(3)_227-242.pdf.

González-Murcia S, Erdmann S, Alvarado-Larios R. 2020. Is this rock pool suitable habitat? Fish diversity in intertidal rock pools of El Zonte, El Salvador. Rev Mex Biodivers. 91:e913099. https://doi.org/10.22201/ib.20078706e.2020.91.3099 DOI: https://doi.org/10.22201/ib.20078706e.2020.91.3099

Griffiths RA. 2005a. Sampling rare or elusive species. In: Thompson WL (ed.) Concepts, designs and techniques for estimating population parameters. Washington (DC, USA): Island Press. 32(4):374. https://doi.org/10.1017/S0376892906262921 DOI: https://doi.org/10.1017/S0376892906262921

Griffiths SP. 2003a. Rockpool ichthyofaunas of temperate Australia: species composition, residency and biogeographic patterns. Estuarine, Coastal Shelf Sci. 58(1):173-186. https://doi.org/10.1016/S0272-7714(03)00073-8 DOI: https://doi.org/10.1016/S0272-7714(03)00073-8

Griffiths SP, West RJ, Davis AR. 2003b. Effects of intertidal elevation on the rockpool ichthyofaunas of temperate Australia. Environ Biol Fishes. 68:197-204. https://doi.org/10.1023/B:EBFI.0000003870.76842.d0 DOI: https://doi.org/10.1023/B:EBFI.0000003870.76842.d0

Griffiths SP. 2005b. The use of clove oil as an anaesthetic and method for sampling intertidal rockpool fishes. J Fish Biol. 57(6):1453-1464. https://doi.org/10.1111/j.1095-8649.2000.tb02224.x DOI: https://doi.org/10.1111/j.1095-8649.2000.tb02224.x

Griffiths SP, Davis AR, West RJ. 2006. Role of habitat complexity in structuring temperate rockpool ichthyofaunas. Mar Ecol Prog Ser. 313:227-239. https://doi.org/10.3354/meps313227 DOI: https://doi.org/10.3354/meps313227

Harasti D, Gallen C, Malcolm H, Tegart P, Hughes B. 2014. Where are the little ones: distribution and abundance of the threatened serranid Epinephelus daemelii (Günther, 1876) in intertidal habitats in New South Wales, Australia. J Appl Ichthyol. 30(5):1007-1015. https://doi.org/10.1111/jai.12446 DOI: https://doi.org/10.1111/jai.12446

Harasti D, Malcolm H, Gallen C, Coleman MA, Jordan A, Knott NA. 2015. Appropriate set times to represent patterns of rocky reef fishes using baited video. J Exp Mar Biol Ecol. 463:173-180. http://dx.doi.org/10.1016/j.jembe.2014.12.003 DOI: https://doi.org/10.1016/j.jembe.2014.12.003

Hartig F. 2021. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. Viena (Austria): The Comprehensive R Archive Network; [accessed 2021 Dec 8]. https://cran.r-project.org/web/packages/DHARMa/vignettes/DHARMa.html.

Irigoyen AJ, Galván DE, Venerus LA, Parma AM. 2013. Variability in abundance of temperate reef fishes estimated by visual census. PLoS One. 8(4):e61072. https://doi.org/10.1371/journal.pone.0061072 DOI: https://doi.org/10.1371/journal.pone.0061072

MacNeil MA, Graham NAJ, Conroy MJ, Fonnesbeck CJ, Polunin NVC, Rushton SP, Chabanet P, McClanahan TR. 2008. Detection heterogeneity in underwater visual-census data. J Fish Biol. 73(7):1748-1763. https://doi.org/10.1111/j.1095-8649.2008.02067.x DOI: https://doi.org/10.1111/j.1095-8649.2008.02067.x

Mahon R, Mahon SD. 1994. Structure and resilience of a tidepool fish assemblage at Barbados. Environ Biol Fish. 41:171-190. https://doi.org/10.1007/BF02197843 DOI: https://doi.org/10.1007/978-94-011-0199-8_15

Malard LA, McGuigan K, Riginos C. 2016. Site fidelity, size, and morphology may differ by tidal position for an intertidal fish, Bathygobius cocosensis (Perciformes-Gobiidae), in Eastern Australia. PeerJ. 4:e2263. https://doi.org/10.7717/peerj.2263 DOI: https://doi.org/10.7717/peerj.2263

McElreath R. 2016. Statistical rethinking: a Bayesian course with examples in R and Stan. London: CRC Press. 469 p.

[MARN] Ministerio de Medio Ambiente y Recursos Naturales. 2018. Almanaque astronómico y marino 2018. El Salvador (Centro América): Dirección General del Observatorio Ambiental, Ministerio de Medio Ambiente y Recursos Naturales (MARN). 71 p.

Moring JR. 1970. Use of the anesthetic quinaldine for handling Pacific coast intertidal fishes. Trans Amer Fish Soc. 99(4):802-805.

https://doi.org/10.1577/1548-8659(1970)99<802:UOTAQF>2.0.CO;2 DOI: https://doi.org/10.1577/1548-8659(1970)99<802:UOTAQF>2.0.CO;2

Oksanen J, Simpson G, Blanchet F, Kindt R, Legendre P, Minchin P, O'Hara R, Solymos P, Stevens M, Szoecs E, et al. 2022. Vegan: Community Ecology Package. R package version 2.6-4. https://CRAN.R-project.org/package=vegan.

Quinn G, Keough M. 2002. Experimental design and data analysis for biologists. Cambridge: Cambridge University Press. 553 p. https://doi.org/10.1017/CBO9780511806384 DOI: https://doi.org/10.1017/CBO9780511806384

R Core Team. 2019. R: A language and environment for statistical computing. Vienna (Austria): R Foundation for Statistical Computing; [accessed 2023 December 8]. https://www.R-project.org/.

Stan Development Team. 2020. Package “rstan”, RStan: the R Interface to Stan. R Package version 2.21.2; [accessed 2023 December 8]. http://mc-stan.org/.

Ward-Paige C, Mills Flemming J, Lotze HK. 2010. Overestimating fish counts by non-instantaneous visual censuses: consequences for population and community descriptions. PLoS One. 5(7):e11722. https://doi.org/10.1371/journal.pone.0011722 DOI: https://doi.org/10.1371/journal.pone.0011722

White GE, Brown C. 2013. Site fidelity and homing behaviour in intertidal fishes. Mar Biol. 160:1365-1372. https://doi.org/10.1007/s00227-013-2188-6 DOI: https://doi.org/10.1007/s00227-013-2188-6

Wilding TA, Gibson RN, Sayer MDJ. 2001. Procedural Guideline No. 4-4 Sampling fish in rockpools. Scotland (UK): UK Marine Sacs Project. Marine Monitoring Handbook. p. 363-368.

Willis T. 2001. Visual census methods underestimate density and diversity of cryptic reef fishes. J Fish Biol. 59(5):1408-1411. https://doi.org/10.1111/j.1095-8649.2001.tb00202.x DOI: https://doi.org/10.1111/j.1095-8649.2001.tb00202.x

Wong MYL, Gordon P, Paijmans KC, Rees MJ. 2019. Finding rockpool fishes: a quantitative comparison of non-invasive and invasive methods for assessing abundance, species richness and assemblage structure. Environ Biol Fishes. 102:81-94. https://doi.org/10.1007/s10641-019-0846-3 DOI: https://doi.org/10.1007/s10641-019-0846-3