Mercury concentrations in domestic and imported canned bivalves and cephalopods sold in northwestern Mexico

Main Article Content

Jorge Ruelas-Inzunza
https://orcid.org/0000-0003-2472-6650
Carolina Delgado-Alvarez
https://orcid.org/0000-0003-0787-9997
Ofelia Escobar-Sánchez
https://orcid.org/0000-0002-7841-0080
Martín Frías-Espericueta
https://orcid.org/0000-0002-3729-1986

Abstract

Mercury (Hg) is mainly incorporated into humans through the consumption of contaminated foods. Mercury was measured and the methyl-Hg (MeHg) concentration was estimated in canned mollusks sold in northwestern Mexico to assess the health risk to consumers. Five mollusk types were considered: oysters, clams, octopuses, mussels, and squids. The Hg concentration of mussels was significantly (P < 0.05) lower than those of the other bivalves (oysters and clams) and cephalopods (squids and octopuses). The average Hg concentration in bivalves (0.013 mg·kg–1) was significantly (P < 0.05) lower than that of cephalopods (0.018 mg·kg–1). The estimated MeHg concentrations were also lower in bivalves than in cephalopods. Based on our results, no health risk is associated with the consumption of canned mollusks that are sold in northwestern Mexico. The Hg and MeHg concentrations followed the order of octopuses > squids = clams > oysters > mussels. The Hg and MeHg concentrations in the mollusks evaluated in this study were below the maximum permissible limits for human consumption in Mexico.

Downloads

Download data is not yet available.

Article Details

How to Cite
Ruelas-Inzunza, J., Delgado-Alvarez, C., Escobar-Sánchez, O., & Frías-Espericueta, M. (2023). Mercury concentrations in domestic and imported canned bivalves and cephalopods sold in northwestern Mexico. Ciencias Marinas, 49. https://doi.org/10.7773/cm.y2023.3393
Section
Research Article

Metrics

References

Al-Mughairi S, Yesudhason P, Al-Busaidi M, Al-Waili A, Al-Rahbi WAK, Al-Mazrooei N, Al-Habsi SH. 2013. Concentration and exposure assessment of mercury in commercial fish and other seafood marketed in Oman. J Food Sci. 78(7):82-90. https://doi.org/10.1111/1750-3841.12150 DOI: https://doi.org/10.1111/1750-3841.12150

Annual ZF, Maher W, Krikowa F, Hakim L, Ahmad NI, Foster S. 2018. Mercury and risk assessment from consumption of crustaceans, cephalopods and fish from West Peninsular Malaysia. Microchem J. 140:214-221. https://doi.org/10.1016/j.microc.2018.04.024 DOI: https://doi.org/10.1016/j.microc.2018.04.024

Apeti DA, Lauenstein GG, Evans DW. 2012. Recent status of total mercury and methyl mercury in the coastal waters of the northern Gulf of Mexico using oysters and sediments from NOAA’s mussel watch program. Mar Pollut Bull. 64:2399-2408. https://doi.org/10.1016/j.marpolbul.2012.08.006 DOI: https://doi.org/10.1016/j.marpolbul.2012.08.006

Blanco SL, González JC, Vieites JM. 2008. Mercury, cadmium and lead levels in samples of the main traded fish and shellfish species in Galicia, Spain. Food Addit Contam Part B. 1(1):15-21. https://doi.org/10.1080/19393210802236893 DOI: https://doi.org/10.1080/19393210802236893

Burger J, Gochfeld M. 2004. Mercury in canned tuna: white versus light and temporal variation. Environ Res. 96(3):239-249. https://doi.org/10.1016/j.envres.2003.12.001 DOI: https://doi.org/10.1016/j.envres.2003.12.001

Claisse D, Cossa D, Bretaudeau-Sanjuan J, Touchard G, Bombled B. 2001. Methylmercury in molluscs along the French coast. Mar Pollut Bull. 42(4):329-332. https://doi.org/10.1016/s0025-326x(01)00036-4 DOI: https://doi.org/10.1016/S0025-326X(01)00036-4

Clarkson TW, Magos L. 2006. The toxicology of mercury and its chemical compounds. Crit Rev Toxicol. 36(8):609-662. https://doi.org/10.1080/10408440600845619 DOI: https://doi.org/10.1080/10408440600845619

[CONAPESCA] Comisión Nacional de Pesca y Acuacultura. 2013. Anuario estadístico de acuacultura y pesca 2013. Mexico: CONAPESCA. 298 p.

Costa FN, Korn MGA, Brito GB, Ferlin S, Fostier AH. 2016. Preliminary results of mercury levels in raw and cooked seafood and their public health impact. Food Chem. 192:837-841. https://doi.org/10.1016/j.foodchem.2015.07.081 DOI: https://doi.org/10.1016/j.foodchem.2015.07.081

Costa MF, Landing WM, Kehrig HA, Barletta M, Holmes CD, Barrocas PRG, Evers DC, Buck DG, Vasconcellos AC, Hacon SS, et al. 2012. Mercury in tropical and subtropical coastal environments. Environ Res. 119:88-100. https://doi.org/10.1016/j.envres.2012.07.008 DOI: https://doi.org/10.1016/j.envres.2012.07.008

Davidson PW, Myers GJ, Weiss B. 2004. Mercury exposure and child development outcomes. Pediatrics. 113(3):1023-1029. https://doi.org/10.1542/peds.113.S3.1023 DOI: https://doi.org/10.1542/peds.113.S3.1023

De Gregori I, Delgado D, Pinochet H, Gras N, Muñoz L, Bruhn C, Navarrete G. 1994. Cadmium, lead, copper and mercury levels in fresh and canned bivalve mussels Tagelus dombeii (Navajuela) and Semelle solida (Almeja) from the Chilean coast. Sci Tot Environ. 148(1):1-10. https://doi.org/10.1016/0048-9697(94)90367-0 DOI: https://doi.org/10.1016/0048-9697(94)90367-0

Delgado-Álvarez CG, Ruelas-Inzunza J, Osuna-López JI, Voltolina D, Frías-Espericueta MG. 2015. Total mercury content in cultured oysters from NW Mexico: health risk assessment. Bull Environ Contam Toxicol. 94:209-213. https://doi.org/10.1007/s00128-014-1430-3 DOI: https://doi.org/10.1007/s00128-014-1430-3

[EPA] Environmental Protection Agency. 2001. Water quality criterion for the protection of human health: methylmercury. Washington (DC): EPA. 308 p.

Gutiérrez AJ, González-Weller D, González T, Burgos A, Lozano G, Reguera JI, Hardisson A. 2007. Content of toxic heavy metals (mercury, lead, and cadmium) in canned variegated scallops (Chlamys varia). J Food Prot. 70(12):2911-2915. https://doi.org/10.4315/0362-028X-70.12.2911 DOI: https://doi.org/10.4315/0362-028X-70.12.2911

Gutiérrez AJ, Lozano G, González T, Reguera JI, Hardisson A. 2006. Mercury content in tinned molluscs (mussel, cockle, variegated scallop, and razor shell) normally consumed in Spain. J Food Prot. 69(9):2237-2240. http://doi.org/10.4315/0362-028X-69.9.2237 DOI: https://doi.org/10.4315/0362-028X-69.9.2237

Hight SC, Cheng J. 2006. Determination of methylmercury and estimation of total mercury in seafood using high performance liquid chromatography (HPLC) and inductively coupled plasma-mass spectrometry (ICP-MS): method development and validation. Anal Chim Acta. 567(2):160-172. https://doi.org/10.1016/j.aca.2006.03.048 DOI: https://doi.org/10.1016/j.aca.2006.03.048

Honda S, Hylander L, Sakamoto M. 2006. Recent advances in evaluation of health effects on mercury with special reference to methylmercury— a minireview. Environ Health Prev Med. 11:171-176. https://doi.org/10.1007/bf02905275 DOI: https://doi.org/10.1007/BF02905275

Karimi R, Frisk M, Fisher NS. 2013. Contrasting food web factor and body size relationships with Hg and Se concentrations in marine biota. PLOS ONE. 8(9):1-10. https://doi.org/10.1371/journal.pone.0074695 DOI: https://doi.org/10.1371/journal.pone.0074695

Lekshmanan PT. 1988. Heavy metals in commercially processed molluscan products in relation to quality. CMFRI Bull. 42(2):417-422.

Lourenço HM, Afonso C, Martins MF, Lino AR, Nunes ML. 2004. Levels of toxic metals in canned seafood. J Aquat Food Prod Tech. 13(3):117-125. https://doi.org/10.1300/J030v13n03_11 DOI: https://doi.org/10.1300/J030v13n03_11

Luoma SN, Rainbow PS. 2005. Why is metal bioaccumulation so variable? Biodynamics as a unifying concept. Environ Sci Tech. 39(7):1921-1931. https://doi.org/10.1021/es048947e DOI: https://doi.org/10.1021/es048947e

McCarron P, Kilcoyne J, Hess P. 2008. Effects of cooking and heat treatment on concentration and tissue distribution of okadaic acid and dinophysistoxin-2 in mussels (Mytilus edulis). Toxicon. 51(6):1081-1089. https://doi.org/10.1016/j.toxicon.2008.01.009 DOI: https://doi.org/10.1016/j.toxicon.2008.01.009

Miklavčič A, Stibilj V, Heath E, Polak T, Tratnik JS, Klavž J, Mazej D, Horvat M. 2011. Mercury, selenium, PCBs and fatty acids in fresh and canned fish available on the Slovenian market. Food Chem. 124:711-720. https://doi.org/10.1016/j.foodchem.2010.06.040 DOI: https://doi.org/10.1016/j.foodchem.2010.06.040

Moody JR, Lindstrom RM. 1977. Selection and cleaning of plastic containers for storage of trace element samples. Anal Chem. 49(14):2264-2267. https://doi.org/10.1021/ac50022a039 DOI: https://doi.org/10.1021/ac50022a039

Morgan JN, Berry MR, Graves RL. 1997. Effects of commonly used cooking practices on total mercury concentration in fish and their impact on exposure assessments. J Expo Anal Environ Epidemiol. 7(1):119-133.

Newman MC. 2009. Fundamentals of Ecotoxicology. Boca Raton (FL): CRC Press. 571 p.

[SSA] Secretaría de Salubridad y Asistencia. 1997 DIC 10. NORMA Oficial Mexicana NOM-129-SSA1-1995, Bienes y servicios. Productos de la pesca: secos-salados, ahumados, moluscos cefalópodos y gasterópodos frescos-refrigerados y congelados. Disposiciones y especificaciones sanitarias. Mexico City (Mexico): Diario Oficial de la Federación. 32 p.

[SSA] Secretaría de Salubridad y Asistencia. 1994 MAR 23. Proyecto de Norma Oficial Mexicana NOM-032-SSA1-1993, Bienes y servicios. Productos de la pesca. Moluscos bivalvos en conserva. Especificaciones sanitarias. Mexico City (Mexico): Diario Oficial de la Federación. 5 p.

Olmedo P, Pla A, Hernández AF, Barbier F, Ayouni L, Gil F. 2013. Determination of toxic elements (mercury, cadmium, lead, tin and arsenic) in fish and shellfish samples. Risk assessment for the consumers. Environ Int. 59:63-72. https://doi.org/10.1016/j.envint.2013.05.005 DOI: https://doi.org/10.1016/j.envint.2013.05.005

Oduoza CF. 1992. Studies of food value and contaminants in canned foods. Food Chem. 44(1):9-12. https://doi.org/10.1016/0308-8146(92)90250-6 DOI: https://doi.org/10.1016/0308-8146(92)90250-6

Pan K, Wang W-X. 2011. Mercury accumulation in marine bivalves: Influences of biodynamics and feeding niche. Environ Pollut. 159(10):2500-2506. https://doi.org/10.1016/j.envpol.2011.06.029 DOI: https://doi.org/10.1016/j.envpol.2011.06.029

Pawlaczyk A, Przerywacz A, Gajek M, Szynkowska-Jozwik MI. 2020. Risk of mercury ingestion from canned fish in Poland. Molecules. 25(24):5884. https://doi.org/10.3390/molecules25245884 DOI: https://doi.org/10.3390/molecules25245884

Ruelas-Inzunza J, Páez-Osuna F, Ruiz-Fernández AC, Zamora-Arellano N. 2011a. Health risk associated to dietary intake of mercury in selected coastal areas of Mexico. Bull Environ Contam Toxicol. 86:180-188. https://doi.org/10.1007/s00128-011-0189-z DOI: https://doi.org/10.1007/s00128-011-0189-z

Ruelas-Inzunza J, Patiño-Mejía C, Soto-Jiménez M, Barba-Quintero G, Spanopoulos-Hernández M. 2011b. Total mercury in canned yellowfin tuna Thunnus albacares marketed in northwest Mexico. Food Chem Toxicol. 49(12):3070-3073. https://doi.org/10.1016/j.fct.2011.07.030 DOI: https://doi.org/10.1016/j.fct.2011.07.030

Tahán JE, Sánchez JM, Granadillo VA, Cubillán HS, Romero RA. 1995. Concentration of total Al, Cr, Cu, Fe, Hg, Na, Pb, and Zn in commercial canned seafood determined by atomic spectrometric means after mineralization by microwave heating. J Agric Food Chem. 43(4): 910-915. https://doi.org/10.1021/jf00052a012 DOI: https://doi.org/10.1021/jf00052a012

Taylor VF, Jackson BP, Chen CY. 2008. Mercury speciation and total trace element determination of low-biomass biological samples. Anal Bioanal Chem. 392:1283-1290. https://doi.org/10.1007%2Fs00216-008-2403-3 DOI: https://doi.org/10.1007/s00216-008-2403-3

Torres-Escribano S, Vélez D, Montoro R. 2010. Mercury and methylmercury bioaccessibility in swordfish. Food Addit Contam Part A. 27(3):327-337. https://doi.org/10.1080/19440040903365272 DOI: https://doi.org/10.1080/19440040903365272

[UNEP] United Nations Environment Programme. 2019. Global Mercury Assessment 2018. Geneva (Switzerland): UNEP. 62 p.

Yi W, Jianying H, Lihui A, Wei A, Min Y, Mitsuaki I, Tatsuya H, Shu T. 2005. Determination of trophic relationships within a Bohai Bay food web using stable δ15N and δ13C analysis. Chin Sci Bull. 50(10):1021-1025. https://doi.org/10.1360/04wd0283 DOI: https://doi.org/10.1360/04wd0283

Most read articles by the same author(s)