Influence of a cyclonic gyre and a thermohaline front on the population structure of Centropages furcatus in Bay of La Paz, Gulf of California

Main Article Content

Erika Mojica-Ramírez
Maria Adela Monreal-Gómez
Sergio Hernández-Trujillo
David Alberto Salas-de León

Abstract

The population structure of Centropages furcatus associated with hydrographic structures in late spring 2004 was analyzed. The distribution of the different copepodite stages of C. furcatus was analyzed from zooplankton samples obtained with a bongo net. The hydrography and geostrophic velocity in Bay of La Paz relative to the bottom depth revealed the presence of a cyclonic gyre in the Alfonso basin area and a thermohaline front near Boca Grande. The distribution of vertically integrated chlorophyll a concentration showed maximum values at the center of the gyre and in the region of the front, making evident that both hydrographic structures stimulated biological productivity because of the flux of nutrients into the euphotic layer in the gyre and the nutrient accumulation in the thermohaline front. The results showed that the spatial variation of C. furcatus was influenced by both hydrographic structures. The differential distribution of the copepodite stages was noticeable in the cyclonic gyre, with the highest density for the first copepodite stages at the center of the gyre because of the high chlorophyll a concentration due to the nutrient enrichment in the euphotic layer, as a result of Ekman pumping. Copepod density was higher in the thermohaline front than inside the cyclonic gyre because the front serves as a reproductive spot for the species, maintaining a stable adult population density inside the bay and in the Gulf of California.

Downloads

Download data is not yet available.

Article Details

How to Cite
Mojica-Ramírez, E., Monreal-Gómez, M. A., Hernández-Trujillo, S., & Salas-de León, D. A. (2023). Influence of a cyclonic gyre and a thermohaline front on the population structure of Centropages furcatus in Bay of La Paz, Gulf of California. Ciencias Marinas, 49. https://doi.org/10.7773/cm.y2023.3370
Section
Research Article

Metrics

References

Aceves-Medina G, Esqueda-Escárcega GM, Pacheco-Chávez R, Zárate-Villafranco A, Hernández-Alonso JR, Hernández-Trujillo S. 2007. Cambios diarios en la composición y abundancia de copépodos planctónicos al sur de la Bahía de La Paz (Octubre 2002) = Daily changes on the composition and abundance of planktonic copepods in southern Bahía de La Paz, México (October 2002). Hidrobiológica. 17(2):185-188. https://hidrobiologica.izt.uam.mx/index.php/revHidro/article/view/990.

Anderson LA, Robinson AR. 2001. Physical and biological modeling in the Gulf Stream region. Part II. Physical and biological processes. Deep-Sea Res Pt I. 48(5):1139-1168. https://doi.org/10.1016/S0967-0637(00)00092-3 DOI: https://doi.org/10.1016/S0967-0637(00)00092-3

Batten SD, Walne AW. 2011. Variability in northwards extension of warm water copepods in the NE Pacific. J Plankton Res. 33(11):1643-1653. https://doi.org/10.1093/plankt/fbr065 DOI: https://doi.org/10.1093/plankt/fbr065

Brand-Schmidt CJ, Pacheco-Chávez R, Carreón-Palau L, del Ángel-Rodríguez JA, Hernández-Trujillo S. 2009. Effect of diatom and dinoflagellate diets on egg production and ingestion rate of Centropages furcatus (Copépoda:Calanoida) from a subtropical bay (Bahía de La Paz, Gulf of California). CICIMAR Oceanides. 24(2):71-83; accessed 08 mar 2023. http://repositoriodigital.ipn.mx/handle/123456789/13293

Bustos-Serrano H, Castro-Valdez R. 2006. Flux of nutrients in the Gulf of California: Geostrophic approach. Mar Chem. 99(1-4):210-219. https://doi.org/10.1016/j.marchem.2005.09.012 DOI: https://doi.org/10.1016/j.marchem.2005.09.012

Calbet A, Carlotti F, Gaudy R. 2007. The feeding ecology of the copepod Centropages typicus (Köyer). Prog Oceanogr. 72(2-3):137-150. https://doi.org/10.1016/j.pocean.2007.01.003 DOI: https://doi.org/10.1016/j.pocean.2007.01.003

Carlotti F, Bonnet D, Halsband-Lenk C. 2007. Development and growth rates of Centropages typicus. Prog Oceanogr. 72(2-3):164-194. https://doi.org/10.1016/j.pocean.2007.01.011 DOI: https://doi.org/10.1016/j.pocean.2007.01.011

Conover RJ, Corner EDS. 1968. Respiration and nitrogen excretion by some marine zooplankton in relation to their life cycles. J Mar Biol Assoc UK. 48(1):49-75. https://doi.org/10.1017/S0025315400032410 DOI: https://doi.org/10.1017/S0025315400032410

Coria-Monter E, Monreal-Gómez MA, Salas-de-León DA, Aldeco-Ramírez J, Merino-Ibarra M. 2014. Differential distribution of diatoms and dinoflagellates in a cyclonic eddy confined in the Bay of La Paz, Gulf of California, J Geophys Res: Oceans. 119(9):6258-6268. https://doi.org/10.1002/2014JC009916 DOI: https://doi.org/10.1002/2014JC009916

Coria-Monter E, Monreal-Gómez MA, Salas de León DA, Durán-Campos E. 2020. Zooplankton abundance during summer in the Bay of La Paz (southwestern Gulf of California, Mexico). Lat Am J Aquat Res. 48(5):794-805. http://doi.org/10.3856/vol48-issue5-fulltext-2515 DOI: https://doi.org/10.3856/vol48-issue5-fulltext-2515

Coria-Monter E, Monreal-Gómez MA, Salas de León DA, Durán-Campos E, Merino-Ibarra M. 2017. Wind driven nutrient and subsurface chlorophyll-a enhancement in the Bay of La Paz, Gulf of California. Estuar Coast Shelf Sci. 196:290-300. https://doi.org/10.1016/j.ecss.2017.07.010 DOI: https://doi.org/10.1016/j.ecss.2017.07.010

Cruz-Hernández J, Sánchez-Velasco L, Godínez VM, Beier E, Palomares-García R, Barton ED, Santamaría-del-Ángel E. 2018. Vertical distribution of calanoid copepods in a mature cyclonic eddy in the Gulf of California. Crustaceana. 91(1):63-84. https://doi.org/10.1163/15685403-00003751 DOI: https://doi.org/10.1163/15685403-00003751

Durán-Campos E, Monreal-Gómez MA, Salas-de-León DA, Coria-Monter E. 2019. Impact of a dipole on the phytoplankton community in a semi-enclosed basin of the southern Gulf of California, Mexico. Oceanologia. 61(3):331-340. https://doi.org/10.1016/j.oceano.2019.01.004 DOI: https://doi.org/10.1016/j.oceano.2019.01.004

Durán-Campos E, Salas-de-León DA, Monreal-Gómez MA, Aldeco-Ramírez J, Coria-Monter E. 2015. Differential zooplankton aggregation due to relative vorticity in a semi-enclosed bay. Estuar Coast Shelf Sci. 164:10-18. https://doi.org/10.1016/j.ecss.2015.06.030 DOI: https://doi.org/10.1016/j.ecss.2015.06.030

Dussart BH, Defaye D. 2001. Introduction to the copepoda. In: Dumont HJF (ed.), Guides to the identification of the microinvertebrates of the continental waters of the world. Vol. 16, 2nd ed. Leiden (Netherlands): Backhuys Publishers. 344 p.

Eden BR, Steinberg DK, Goldthwait SA, McGillicuddy DJ Jr. 2009. Zooplankton community structure in a cyclonic and mode-water eddy in the Sargasso Sea. Deep-Sea Res Pt I. 56(10):1757-1776. https://doi.org/10.1016/j.dsr.2009.05.005 DOI: https://doi.org/10.1016/j.dsr.2009.05.005

Fofonoff NP, Millard RC. 1983. Algorithms for computation of fundamental properties of seawater, UNESCO Technical Papers in Marine Sciences. Paris (France): UNESCO. 53 p. Paper No.: 44. https://doi.org/10.25607/OBP-1450

García-Mirafuentes S. 2010. Análisis de las características del giro ciclónico de la Bahía de La Paz [MSc thesis]. [Mexico City (Mexico)]: Universidad Nacional Autónoma de México. 86 p.

Gaudy R, Thibault-Botha D. 2007. Metabolism of Centropages species in the Mediterranean Sea and the North Atlantic Ocean. Prog Oceanogr. 72(2-3):151-163. https://doi.org/10.1016/j.pocean.2007.01.005 DOI: https://doi.org/10.1016/j.pocean.2007.01.005

Grasshoff K, Kremling K, Ehrhardt M. 1999. Methods of Seawater Analysis. 3rd ed. Weinheim (Germany): Wiley-VCH Verlag GmbH. 600 p. https://doi.org/10.1002/9783527613984 DOI: https://doi.org/10.1002/9783527613984

Hales B, Hebert D, Marra J. 2009. Turbulent supply of nutrients to phytoplankton at the New England shelf break front. J Geophys Res. 114(C5):C05010. https://doi.org/10.1029/2008JC005011 DOI: https://doi.org/10.1029/2008JC005011

Halsband-Lenk C, Carlotti F, Greve W. 2004. Life-history strategies of calanoid congeners under two different climate regimes: a comparison. ICES J Mar Sci. 61(4):709-720. https://doi.org/10.1016/j.icesjms.2004.03.020 DOI: https://doi.org/10.1016/j.icesjms.2004.03.020

Halsband-Lenk C, Hirche HJ, Carlotti F. 2002. Temperature impact on reproduction and development of congener copepod populations. J Exp Mar Biol Ecol. 271(2):121-153. https://doi.org/10.1016/S0022-0981(02)00025-4 DOI: https://doi.org/10.1016/S0022-0981(02)00025-4

Hernández-Trujillo S, Esqueda Escárcega GM. 2016. Tasa de producción de huevos de copépodos del Pacífico central mexicano = Copepod egg production rate in pelagic copepods in the Mexican Central Pacific. CICIMAR Oceánides. 31(1):1-6. http://doi.org/10.37543/oceanides.v31i1.154 DOI: https://doi.org/10.37543/oceanides.v31i1.154

Hernández-Trujillo S, Zárate-Villafranco A, Pacheco-Chávez R, Esqueda-Escárcega G, Hernández-Alfonso JR, Aceves-Medina G. 2008. Variación estacional de la producción de huevos del copépodo calanoideo Centropages furcatus (Dana, 1852) en la Bahía de La Paz, México = Seasonal variability of egg production rates of calanoid copepod Centropages furcatus (Dana, 1852) in Bahia de La Paz, Mexico. Hidrobiológica. 18(supl. 1):61-67; accessed 15 mar 2023. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0188-88972008000400010&lng=es&nrm=iso

Ianora A. 1998. Copepod life history traits in subtemperate regions. J Mar Syst. 15(1–4):337-349. https://doi.org/10.1016/S0924-7963(97)00085-7 DOI: https://doi.org/10.1016/S0924-7963(97)00085-7

Kiefer DA, Chamberlin WS Booth CR. 1989. Natural fluorescence of chlorophyll-a: Relationship to photosynthesis and chlorophyll concentration in the western South Pacific gyre. Limnol Oceanogr. 34(5):868-881. https://doi.org/10.4319/lo.1989.34.5.0868 DOI: https://doi.org/10.4319/lo.1989.34.5.0868

Kirkwood DS. 1994. SanPlus Segmented Flow Analyzer and its Applications Seawater Analysis. Amsterdam (Netherlands): Skalar. 51 p.

Lavaniegos BE, Heckel G, Ladrón de Guevara P. 2012. Seasonal variability of copepods and cladocerans in Bahía de los Ángeles (Gulf of California) and importance of Acartia clausi as food for whale sharks = Variabilidad estacional de copépodos y cladóceros de bahía de los Ángeles (golfo de California) e importancia de Acartia clausi como alimento del tiburón ballena. Cienc Mar. 38(1A):11-30. https://doi.org/10.7773/cm.v38i1A.2017 DOI: https://doi.org/10.7773/cm.v38i1A.2017

Lavín MF, Marinone SG. 2003. An overview of the physical oceanography of the Gulf of California. In: Velasco Fuentes OU, Sheimbaum J, Ochoa J (eds.), Nonlinear Processes in Geophysical Fluid Dynamics. Netherlands: Springer. 376 p. https://doi.org/10.1007/978-94-010-0074-1_11 DOI: https://doi.org/10.1007/978-94-010-0074-1_11

Llinás L, Pickart RS, Mathis JT, Smith SL. 2009. Zooplankton inside an Artic Ocean cold-core eddy: Probable origin and fate. Deep-Sea Res Pt II. 56(17):1290-1304. https://doi.org/10.1016/j.dsr2.2008.10.020 DOI: https://doi.org/10.1016/j.dsr2.2008.10.020

López-Ibarra GA. 2008. Estructura trófica de los copépodos pelágicos en el Océano Pacífico Oriental Tropical [dissertation]. [La Paz (BCS)]: CICIMAR-IPN; accessed 06 mar 2023. 92 p. http://repositoriodigital.ipn.mx/handle/123456789/14274

Mahadevan A. 2016. The impact of submesoscale physics on primary productivity of plankton. Annu Rev Mar Sci. 8:161-184. http://doi.org/10.1146/annurev-marine-010814-015912 DOI: https://doi.org/10.1146/annurev-marine-010814-015912

Mauchline J. 1998. The biology of Calanoid Copepods. 1st ed. San Diego (California, USA): Academic Press. 710 p.

McGillicuddy DJ, Anderson LA, Bates NR, Bibby T, Buesseler KO, Carlson CA, Davis CS, Ewart C, Falkowski PG, Goldthwait SA, et al. 2007. Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms. Science. 316(5827):1021-1026. https://doi.org/10.1126/science.1136256 DOI: https://doi.org/10.1126/science.1136256

McGillicuddy DJ Jr. 2016. Mechanisms of physical-biological-biogeochemical interaction at the oceanic mesoscale. Ann Rev Mar Sci. 8:125-159. https://doi.org/10.1146/annurev-marine-010814-015606 DOI: https://doi.org/10.1146/annurev-marine-010814-015606

Mojica-Ramírez E. 2008. Estructura del zooplancton de la Bahía de La Paz, B.C.S. y su relación con la hidrografía durante el verano del 2004 [MSc thesis]. [Mexico City (Mexico)]: Universidad Nacional Autónoma de México. 74 p.

Molinero JC, Nival P. 2004. Spatial distribution of the copepod Centropages typicus in Ligurian Sea (NW Mediterranean). Role of surface currents estimated by Topex-Poseidon altimetry. C R Biol. 327(12):1103-1111. https://doi.org/10.1016/j.crvi.2004.09.004 DOI: https://doi.org/10.1016/j.crvi.2004.09.004

Monreal-Gómez MA, Molina-Cruz A, Salas-de-León DA. 2001. Water masses and cyclonic circulation in Bay of La Paz, Gulf of California, during June 1998. J Mar Syst. 30(3–4):305-315. https://doi.org/10.1016/S0924-7963(01)00064-1 DOI: https://doi.org/10.1016/S0924-7963(01)00064-1

Palomares RE, Suarez-Morales E, Hernández-Trujillo S. 1998. Catálogo de los copépodos (crustacea) pelágicos del Pacífico Mexicano. La Paz (Baja California): El Colegio de la Frontera Sur. 352 p. Palomares-García RA, Martínez-López A, de Silva-Dávila R. 2003. Winter egg production for four calanoid copepod species in Bahía de La Paz, México. In: Hendrickx ME (ed.), Contributions to the Study of the Pacific Crustaceans 2. Mexico: Universidad Nacional Autónoma de México. 303 p.

Pinca S, Dallot S. 1997. Zooplankton community structure in the Western Mediterranean sea related to mesoscale hydrodynamics. Hydrobiologia. 356(1-3):127-142. https://doi.org/10.1023/A:1003151609682 DOI: https://doi.org/10.1023/A:1003151609682

Pond S, Pickard GL. 1995. Introductory Dynamical Oceanography. 2nd ed. Oxford: Butterworth-Heineman. 329 p.

Rocha-Díaz FA, Monreal-Gómez MA, Coria-Monter E, Salas-de-León DA, Durán-Campos E. 2022. Seasonal variability in copepod biomass in a cyclonic eddy in the Bay of La Paz, southern Gulf of California, Mexico = Variabilidad estacional de la biomasa de copépodos en un vórtice ciclónico en la bahía de la Paz, sur del golfo de California, México. Cienc Mar. 48:e3167. https://doi.org/10.7773/cm.y2022.3167 DOI: https://doi.org/10.7773/cm.y2022.3167

Saavedra-Rojas NC. 2003. Estructura hidrográfica, nutrientes y pigmentos fotosintéticos de la Bahía de La Paz, Golfo de California, en febrero y noviembre del 2000 [MSc thesis]. [Mexico City (Mexico)]: Universidad Nacional Autónoma de México. 79 p.

Sánchez-Velasco L, Beier E, Avalos-García C, Lavín MF. 2006. Larval fish assemblages and geostrophic circulation in Bahía de La Paz and the surrounding southwestern region of the Gulf of California. J Plankton Res. 28(2):1081-1098. https://doi.org/10.1093/plankt/fbl040 DOI: https://doi.org/10.1093/plankt/fbl040

Smith RJ. 1999. Statistics of sexual size dimorphism. J Hum Evol. 36(4):423-458. https://doi.org/10.1006/jhev.1998.0281 DOI: https://doi.org/10.1006/jhev.1998.0281

Smith SL, Lane PVZ. 1985. Laboratory studies of the marine copepod Centropages typicus: egg production and development rates. Mar Biol. 85:153-162. https://doi.org/10.1007/BF00397434 DOI: https://doi.org/10.1007/BF00397434

Trasviña-Castro A, Gutierrez de Velasco G, Valle-Levinson A, González-Armas R, Muhlia A, Cosio MA. 2003. Hydrographic observations of the flow in the vicinity of a shallow seamount top in the Gulf of California. Estuar Coast Shelf Sci. 57(1-2):149-162. https://doi.org/10.1016/S0272-7714(02)00338-4 DOI: https://doi.org/10.1016/S0272-7714(02)00338-4

Van Someren-Gréve H, Almeda R, Lindegren M, KiØrboe T. 2017. Gender-specific feeding rates in planktonic copepods with different feeding behavior. J Plankton Res. 39(4):631-644. https://doi.org/10.1093/plankt/fbx033 DOI: https://doi.org/10.1093/plankt/fbx033

Vidya PJ, Kumar SP. 2013. Role of mesoscale eddies on the variability of biogenic flux in the northern and central Bay of Bengal. J Geophys Res: Oceans. 118(10):5760-5771. https://doi.org/10.1002/JGRC.20423 DOI: https://doi.org/10.1002/jgrc.20423

Most read articles by the same author(s)