Seasonal variation in the reproductive and larval performance of the winged pearl oyster Pteria sterna associated with anomalous environmental conditions

Main Article Content

Eliana Gómez-Robles
Héctor Acosta-Salmón
https://orcid.org/0000-0002-3266-9572
José M Mazón-Suástegui
https://orcid.org/0000-0002-3266-9572
Pedro E Saucedo
https://orcid.org/0000-0002-2155-9677

Abstract

The reproductive and larval performance of Pteria sterna associated with anomalous environmental factors was evaluated, testing the hypothesis that the transition from La Niña to El Niño in 2008–2009 affected the “normal” periods in which ripe broodstock are collected and larvae are reared in a hatchery. Seasonal sampling included 2 reproductive periods (February and April 2009), 1 pre-reproductive period (November 2008), and 1 post-reproductive period (June 2009). Of the 40 oysters collected in each period, 20 were used for induced spawning and larval culture, while 20 were used to evaluate indices of reproductive performance. Water temperature, salinity, and seston content were monitored in each period. Sea surface temperature (SST) data associated with anomalous environmental conditions were obtained from the Aqua-MODIS satellite. Variations in SST affected reproductive performance more than larval performance in Pteria sterna. Spawning induction failed in November 2008 and succeeded in February, April, and June 2009, although only the larvae from April completed metamorphosis and settled, given the riper broodstock, larger oocytes, and favorable environmental conditions (21.80 °C; 31 mg·L–1 total seston; +0.50 °C SST). Positive SST anomalies (+0.50 to +1.10 °C) from August to December 2008 resulted in longer summer conditions that affected spawning in February 2009. In June 2009 (22.50 °C; 29.50 mg·L–1 total seston; +0.40 °C SST), when the percentages of ripe gonads and mature oocytes were small, the larvae were not viable, and few spat settled. In addition to collecting ripe broodstock in winter-spring for optimal larval and spat viability, we recommend including a brief conditioning period at the hatchery following the spawning peak and a second conditioning period in late autumn to promote nutrient recycling and natural gamete recovery.

Downloads

Download data is not yet available.

Article Details

How to Cite
Gómez-Robles, E., Acosta-Salmón, H., Mazón-Suástegui, J. M., & Saucedo, P. E. (2023). Seasonal variation in the reproductive and larval performance of the winged pearl oyster Pteria sterna associated with anomalous environmental conditions. Ciencias Marinas, 49. https://doi.org/10.7773/cm.y2023.3353
Section
Research Article
Author Biography

Pedro E Saucedo, Centro de Investigaciones Biológicas del Noroeste

Senior Researcher Aquaculture Program

Metrics

References

Angel-Dapa MA, Arellano-Martínez M, Ceballos-Vázquez BP, Robles-Mungaray M, Robles-Rocha E, Camacho-Mondragón MA, Saucedo PE. 2015. Reproductive and larval performance of the pen shell Atrina maura in relation to the origin and condition of broodstock. J Shellfish Res. 34(2):401-408. http://doi.org/10.2983/035.034.0223 DOI: https://doi.org/10.2983/035.034.0223

Araya-Núñez O, Ganning, B, Bückle-Ramírez F. 1991. Gonad maturity, induction of spawning, larval breeding and growth in the American pearl-oyster (Pteria sterna Gould). Calif Fish Game. 77:181-193.

Araya-Núñez O, Ganning B, Bückle-Ramírez F. 1995. Embryonic development, larval culture, and settling of American pearl-oyster (Pteria sterna, Gould) spat. Calif Fish Game. 81:10-21.

Bayliss HO. 1984. Lipid histochemistry. New York (NY): Oxford University Press. 68 p.

Bligh EG, Dyer WJ. 1959. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 37(8):911-917. https://doi.org/10.1139/o59-099 DOI: https://doi.org/10.1139/o59-099

Bradford MM. 1976. A rapid method for the quantification of microgram quantities of protein utilizing the principle of dye-binding. Anal Biochem. 72(1-2):248-254. https://doi.org/10.1016/0003-2697(76)90527-3 DOI: https://doi.org/10.1016/0003-2697(76)90527-3

Brett JR, Groves TDD. 1979. Physiological energetics. In: Hoar WS, Randall DJ, Brett JR (eds.), Fish Physiology. New York (NY): Academic Press. p. 280-352. DOI: https://doi.org/10.1016/S1546-5098(08)60029-1

Cáceres-Puig JI, Cáceres-Martínez C, Saucedo PE. 2009. Annual reproductive effort of pacific winged pearl oyster Pteria sterna and its relation with the timing for planning pearl seeding operations. J Shellfish Res. 28(3):471-476. https://doi.org/10.2983/035.028.0308 DOI: https://doi.org/10.2983/035.028.0308

Chávez-Villalba J, Barret J, Mingant C, Cochard JC, Le Pennec M. 2003. Influence of timing of broodstock collection on conditioning, oocyte production, and larval rearing of the oyster Crassostrea gigas (Thunberg), at six production sites in France. J Shellfish Res. 22:465-474.

Doroudi MS, Southgate PC. 2002. The effect of chemical cues on settlement behaviour of blacklip pearl oyster (Pinctada margaritifera) larvae. Aquaculture. 209(1–4):117-124. http://doi.org/10.1016/S0044-8486(01)00736-0 DOI: https://doi.org/10.1016/S0044-8486(01)00736-0

Gagné R, Tremblay R, Pernet F, Miner P, Samain JF, Olivier F. 2010. Lipid requirement of the scallop Pecten maximus (L.) during larval and post-larval development in relation to addition of Rhodomonas salina in diet. Aquaculture. 309(1–4):212-221. http://doi.org/10.1016/j.aquaculture.2010.09.040 DOI: https://doi.org/10.1016/j.aquaculture.2010.09.040

Gallager SM, Mann R, Sasaki GC. 1986. Lipid as an index of growth and viability in three species of bivalve larvae. Aquaculture. 56(2):81-103. http://doi.org/10.1016/0044-8486(86)90020-7 DOI: https://doi.org/10.1016/0044-8486(86)90020-7

García-Cuellar JA, García-Domínguez FA, Lluch-Belda D, Hernández-Vázquez S. 2004. El Niño and La Niña effects on reproductive cycle of the pearl oyster Pinctada mazatlanica (Hanley, 1856) (Pteriidae) at Isla Espíritu Santo in the Gulf of California. J Shellfish Res. 23:113-120.

Gireesh R, Biju A, Muthiah P. 2009. Biochemical changes during larval development in the short neck clam, Paphia malabarica Chemnitz. Aquacult Res. 40(13):1510-1515. http://doi.org/10.1111/J.1365-2109.2009.02251.X DOI: https://doi.org/10.1111/j.1365-2109.2009.02251.x

Gómez-Robles E, Mazón-Suástegui JM, Acosta-Salmón H, Hawkyns-Martínez M, Saucedo PE. 2013. Internal nutrient management associated with gonad quality and successful reproduction in the winged pearl oyster Pteria sterna. Aquaculture. 412-413:45-51. https://doi.org/10.1016/j.aquaculture.2013.07.010 DOI: https://doi.org/10.1016/j.aquaculture.2013.07.010

Hoyos-Chairez F, Aragón-Noriega EA, Chávez-Villalba J. 2020. Modelling early growth of the pearl oyster Pteria sterna under pilot-commercial production. Aquacult Res. 51(12):5106-5117. https://doi.org/10.1111/are.14849 DOI: https://doi.org/10.1111/are.14849

Kiefert L, McLaurin-Moreno D, Arizmendi E, Hänni HA, Elen S. 2004. Cultured pearls from the Gulf of California, Mexico. Gems Gemol. 40(1):26-38. https://doi.org/10.5741/GEMS.40.1.26 DOI: https://doi.org/10.5741/GEMS.40.1.26

Kim Y, Ashton-Alcox KA, Powell EN. 2006. Histological Techniques for Marine Bivalve Molluscs: Update. NOS NCC OS 27. Silver Spring (MD): NOAA Technical Memorandum. p. 76.

Kraueter JN, Castagna M, Van Dessel R. 1982. Egg size and larval survival of Mercenaria mercenaria (L.) and Argopecten irradians (Lamarck). J Exp Mar Biol Ecol. 56(1):3-8. https://doi.org/10.1016/0022-0981(81)90003-4 DOI: https://doi.org/10.1016/0022-0981(81)90003-4

Le Pennec M, Gueguen F, Cochard JC, Paulet YM, Dorange G. 1990. Relations entre contenu lipidique des ovocytes de Pecten maximus (Mollusque, Bivalve) et les performances des larves en elevage. Haliotis. 10:101-113.

Leyva A, Quintana A, Sánchez M, Rodríguez EN, Cremata J, Sánchez JC. 2008. Rapid and sensitive anthrone–sulfuric acid assay in microplate format to quantify carbohydrate in biophamaceutical products: Method development and validation. Biologicals. 36(2):134-141. https://doi.org/10.1016/j.biologicals.2007.09.001 DOI: https://doi.org/10.1016/j.biologicals.2007.09.001

Luna-González A, Cáceres-Martínez C, Zúñiga-Pacheco C, López-López S, Ceballos-Vázquez BP. 2000. Reproductive cycle of Argopecten ventricosus (Sowerby 1842) (Bivalvia: Pectinidae) in the Rada del puerto de Pichilingue, B.C.S., México and its relation to temperature, salinity, and quantity of available food. J Shellfish Res. 19(1):107-112.

Mazón-Suástegui JM, López-Carvallo JA, Tovar-Ramírez D, Arcos-Ortega GF, Saucedo PE, Lodeiros C, Freites L. 2021. Growth of catarina scallop (Argopecten ventricosus, Sowerby II, 1842) larvae from broodstock collected at different seasons. Aquacult Res. 52(11):5903-5907. https://doi.org/10.1111/are.15412 DOI: https://doi.org/10.1111/are.15412

Nevejean N, Saez I, Gajardo G, Sorgeloos P. 2003. Energy vs. essential fatty acids: what do scallop larvae (Argopecten purpuratus) need most? Comp Biochem Physiol Part B Biochem Mol Biol. 134(4):599-613. https://doi.org/10.1016/s1096-4959(03)00020-4 DOI: https://doi.org/10.1016/S1096-4959(03)00020-4

Pastor F. 2021. Sea surface temperature: from observation to applications. J Mar Sc Eng. 9(11):1284. https://doi.org/10.3390/jmse9111284 DOI: https://doi.org/10.3390/jmse9111284

Pernet F, Tremblay R, Bourget E. 2003. Biochemical indicator of sea scallop (Placopecten magellanicus) quality based on lipid class composition. Part II: larval rearing, competency and settlement. J Shellfish Res. 22:377-388.

Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W. 2002. An improved in situ and satellite SST analysis for climate. J Climate. 15(13):1609-1625.

https://doi.org/10.1175/1520-0442(2002)015<1609:aiisas>2.0.co;2 DOI: https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2

Rodríguez-Jaramillo MC, Hurtado MA, Romero-Vivas E, Manzano M, Palacios E. 2008. Gonadal development and histochemistry of the tropical oyster Crassostrea corteziensis (Hertlein, 1951) during and annual reproductive cycle. J Shellfish Res. 27:1129-1141. DOI: https://doi.org/10.2983/0730-8000-27.5.1129

Ruiz-Rubio H, Acosta-Salmón H, Olivera A, Southgate PC, Rangel-Dávalos C. 2006. The influence of culture method and culture period on quality of half-pearls (‘mabé’) from the winged pearl oyster Pteria sterna, Gould, 1851. Aquaculture. 254(1-4):269-274. https://doi.org/10.1016/j.aquaculture.2005.09.030 DOI: https://doi.org/10.1016/j.aquaculture.2005.09.030

Saucedo PE. 2017. Advances in hatchery production of the winged pearl oyster. World Aquacult. (March):31-33.

Saucedo PE, Monteforte M. 1997. Breeding cycle of pearl oysters Pinctada mazatlanica and Pteria sterna (Bivalvia: Pteriidae) at Bahía de La Paz, Baja California Sur. México. J Shellfish Res. 16(1):103-110.

Saucedo PE, Southgate PC. 2008. Reproduction, development and growth. In: Southgate PC, Lucas JS (eds.), The Pearl Oyster: Biology and Culture. Amsterdam (The Netherlands): Elsevier. p. 131-186. https://doi.org/10.1016/B978-0-444-52976-3.00005-X DOI: https://doi.org/10.1016/B978-0-444-52976-3.00005-X

Sokal RR, Rohlf FJ. 1981. Biometry, the principles and practice of statistics in biological research. San Francisco (CA): W. H. Freeman. 859 p.

Southgate PC. 2011. Overview of the cultured pearl industry. In: Bondad-Reantaso MG, McGladdery SE, Berthe FCJ (eds.), Pearl Oyster Health Management: A manual. Rome (Italy): FAO Fisheries Technical Paper No. 503. p. 7-15.

Southgate PC. Pearl oyster culture. 2008. In: Southgate PC, Lucas JS (eds.), The Pearl Oyster: Biology and Culture. Amsterdam (The Netherlands): Elsevier Science. p. 231-272. DOI: https://doi.org/10.1016/B978-0-444-52976-3.00007-3

Southgate PC, Beer AC, Ngaluafe P. 2016. Hatchery culture of the winged pearl oyster, Pteria penguin, without living micro-algae. Aquaculture. 451:121-124. https://doi.org/10.1016/j.aquaculture.2015.09.007 DOI: https://doi.org/10.1016/j.aquaculture.2015.09.007

Vite-García MN, Saucedo PE. 2008. Energy storage and allocation during reproduction of pearl oyster Pteria sterna (Gould, 1851) at Bahía de La Paz, Baja California Sur, Mexico. J Shellfish Res. 27(2):375-383. https://doi.org/10.2983/0730-8000(2008)27[375:ESAADR]2.0.CO;2 DOI: https://doi.org/10.2983/0730-8000(2008)27[375:ESAADR]2.0.CO;2

Wassnig M, Southgate PC. 2012a. Embryonic and larval development of Pteria penguin (Röding, 1798) (Bivalvia: Pteriidae). J Molluscan St. 78(1):134-141. https://doi.org/10.1093/mollus/eyr051 DOI: https://doi.org/10.1093/mollus/eyr051

Wassnig M, Southgate PC. 2012b. Effects of settlement cues on behaviour and substrate attachment of hatchery reared winged pearl oyster (Pteria penguin) larvae. Aquaculture. 344–349:216-222. https://doi.org/10.1016/j.aquaculture.2012.03.020 DOI: https://doi.org/10.1016/j.aquaculture.2012.03.020

Wassnig M, Southgate PC. 2016. The effects of stocking density and ration on survival and growth of winged pearl oyster (Pteria penguin) larvae fed commercially available micro-algae concentrates. Aquacult Rep. 4:17-21. https://doi.org/10.1016/j.aqrep.2016.05.004 DOI: https://doi.org/10.1016/j.aqrep.2016.05.004

Most read articles by the same author(s)