# **Relationship between body size and geographic range size of elasmobranchs** from the Tropical Eastern Pacific: An initial approximation for their conservation

# Relación entre el tamaño corporal y la amplitud de distribución geográfica de elasmobranquios del Pacífico Oriental Tropical: Una aproximación inicial para su conservación

PA Mejía-Falla<sup>1, 2\*</sup>, AF Navia<sup>1, 3</sup>

- <sup>1</sup> Fundación Colombiana para la Investigación y Conservación de Tiburones y Rayas, SQUALUS, Carrera 79 No. 6-37, Cali, Colombia.
- <sup>2</sup> Grupo de Ecología de Arrecifes Coralinos, Universidad del Valle, Departamento de Biología, Sección de Biología Marina, A.A. 25360 Cali, Colombia.
- <sup>3</sup> Grupo de Investigación en Ecología, Universidad del Valle, Departamento de Biología, Sección de Zoología, A.A. 25360 Cali, Colombia.
- \* Corresponding author. E-mail: pmejia@squalus.org

**ABSTRACT.** This study evaluated the relationship between body size and geographic range size, measured as extent and volume of occurrence of resident and endemic elasmobranchs of the Tropical Eastern Pacific. Data of body size, minimum and maximum depths, and latitudinal distribution of the species were obtained from the literature. Extent and volume of occurrence were measured from 3080.25-km<sup>2</sup> quadrants, considering the northern and southern boundaries, the maximum depth, and the depth interval of the 82 species included. The relationships between body size and depth, extent of occurrence, and volume of occurrence, and between body size and bathymetric zones were evaluated using linear regression and a nonparametric analysis of variance, respectively. The relationship between body size and extent of occurrence was positive for all groups and significant only for the batoids. They occupy smaller depth intervals than sharks and are almost exclusively restricted to the euphotic zone; the resident sharks occur in the three bathymetric zones, but not the endemic sharks. The interspecific relationship of body size and volume of occurrence revealed a triangle with defined boundaries, with 22 species under the constraint line (13 sharks and 9 batoids), *Pristis* sp. and *Manta birostris* being the most prone to extinction. Although there were no factors or characteristics common to all 22 species, variables such as habits and reproductive traits influence their vulnerability, in addition to the human pressures to which they are subjected. In elasmobranchs, the triangular relationship between body size and range size is a good predictor of species susceptible to extinction, which is useful for assessing the threat status and taking action for management and prioritization of species at regional level.

Key words: sharks, batoids, endangered species, macroecology, conservation.

**RESUMEN.** Este trabajo evaluó la relación entre el tamaño corporal y la amplitud de distribución geográfica, medido como extensión y volumen de ocurrencia de los elasmobranquios residentes y endémicos del Pacífico Oriental Tropical. Los datos de tamaño corporal, profundidades mínimas y máximas y distribución latitudinal de las especies se obtuvieron de la literatura. La extensión y el volumen de ocurrencia se midieron a partir de cuadrantes de 3080.25 km<sup>2</sup>, considerando los límites norte y sur, la profundidad máxima y el intervalo de profundidad de las 82 especies incluidas. Las relaciones entre el tamaño corporal y la profundidad, la extensión de ocurrencia y el volumen de ocurrencia, y entre el tamaño corporal y las zonas batimétricas fueron evaluadas mediante regresiones lineales y un análisis de varianza no paramétrico, respectivamente. La relación entre el tamaño corporal y la extensión de ocurrencia fue positiva para todos los grupos y significativa sólo para las rayas. Éstas ocupan menores intervalos de profundidad que los tiburones y están restringidas casi exclusivamente a la zona eufótica; los tiburones residentes se distribuyen en las tres zonas batimétricas, mas no así los tiburones endémicos. La relación interespecífica del tamaño corporal y el volumen de ocurrencia permitió observar un triángulo con límites definidos, con 22 especies bajo la línea limitante (13 tiburones y 9 rayas); *Pristis* sp. y *Manta birostris* resultaron las más propensas a la extinción. Aunque no se encontraron factores o características completamente comunes a las 22 especies, las variables como los hábitos y rasgos reproductivos influyen en la vulnerabilidad de las mismas, además de las presiones antrópicas a las que están sometidas. En elasmobranquios, la relación triangular entre el tamaño corporal y la amplitud de distribución es un buen predictor de las especies propensas a la extinción, lo que resulta útil tanto para la evaluación de los estados de amenaza como para la toma de medidas de manejo y de priorización de

Palabras clave: tiburones, rayas, especies amenazadas, macroecología, conservación.

#### INTRODUCTION

Body size is strongly related to ecological, physiological, and life history traits and is considered one of the most important attributes of organisms (Roy and Martien 2001). It also has an important influence on the organization of ecological communties (Lawton 1996). Thus, several studies have addressed the spatial distribution of body size across environmental gradients such as those associated with latitude and depth (Rosenfield 2002, Smith and Brown 2002).

A number of studies have documented positive relationships between body size and geographic range size of animal species (Reaka 1980, Brown and Maurer 1989, Brown and Nicoletto 1991, Taylor and Gotelli 1994), as well as negative or null relationships (Gaston 1996). Gaston and Blackburn (1996a), however, suggest that the interspecific relationship between these variables is more complex, graphically presenting a triangular shape with boundaries imposed by the study area (top) and minimum body size exhibited by a species (left), the diagonal or constraint line being the most important because it indicates that the larger the body size, the larger the minimum range size.

Gaston and Blackburn (1996b) found five mechanisms that have been proposed to explain this relationship: (1) home range size increases with body size; (2) the ability to disperse increases with body size; (3) large-bodied animals can maintain homeostasis over a broader spectrum of conditions; (4) body size and geographic range size decrease with latitude; and (5) intrinsic rates of increase are negatively related to body size, resulting in more rapid colonization of empty spaces by small species. On the other hand, Brown *et al.* (1996) suggest that the shapes of geographic range sizes and the dynamic changes in range boundaries reflect the influence of limiting environmental conditions (niche variables) and the dispersal-extinction dynamics of species.

Interspecific relationships between body size and geographic range size have attracted attention in the context of macroecology because they can explain how species allocate space and resources (Brown and Maurer 1987, 1989; Gaston 1991; Taylor and Gotelli 1994). This could have potentially important consequences for conservation (Gaston and Blackburn 1996a, 1996b; Brown *et al.* 1996), especially at global space scales. Large-bodied species with small geographic range size are considered the most likely candidates for extinction (Taylor and Gotelli 1994).

The existence of these relationships in aquatic environments has been documented. Pyron (1999) reported a positive relationship between body size and geographic range size, local abundance, and habitat breadth for North American freshwater fishes. Macpherson (2003) observed that in the Atlantic Ocean, pelagic species have wider geographic ranges than benthic species, and that the bathymetric range sizes are influenced by latitude and that Rapoport's rule is not supported in this region. Goodwin *et al.* (2005) reported a positive relationship between the body size and

#### INTRODUCCIÓN

El tamaño corporal está relacionado con rasgos ecológicos, fisiológicos y de historia de vida y es considerado uno de los atributos más importantes de los organismos (Roy y Martien 2001). También influye de manera importante en la organización de las comunidades ecológicas (Lawton 1996). De esta forma, varios estudios se han focalizado en la distribución espacial del tamaño corporal a través de gradientes ambientales tales como aquellos asociados con la latitud y la profundidad (Rosenfield 2002, Smith y Brown 2002).

Varios trabajos han documentado relaciones positivas entre el tamaño de cuerpo y la amplitud de distribución geográfica de especies animales (Reaka 1980, Brown y Maurer 1989, Brown y Nicoletto 1991, Taylor y Gotelli 1994), o relaciones negativas o nulas (Gaston 1996). Sin embargo, Gaston y Blackburn (1996a) proponen que la relación interespecífica entre estas variables es más compleja: gráficamente presenta una forma triangular con límites impuestos por el área de estudio (superior) y el tamaño de cuerpo mínimo exhibido por una especie (izquierdo), y la diagonal o línea limitante es la más importante ya que indica que a mayor tamaño corporal, mayor amplitud de distribución mínima.

Gaston y Blackburn (1996b) encontraron cinco mecanismos que han sido sugeridos para explicar esta relación: (1) el tamaño de hábitat (home range) se incrementa con el tamaño corporal; (2) la habilidad de dispersión se incrementa con el tamaño corporal; (3) los animales de cuerpo grande pueden mantener homeostasis sobre un espectro de condiciones más amplio; (4) el tamaño corporal y la amplitud de distribución geográfica decrecen con la latitud y (5) las tasas intrínsecas de incremento están relacionadas negativamente con el tamaño corporal, lo que resulta en una colonización más rápida de sitios vacíos por especies pequeñas. De manera paralela, Brown et al. (1996) plantean que la forma de las amplitudes de distribución geográfica y los cambios dinámicos en los límites de tal distribución reflejan la influencia de condiciones ambientales limitantes (variables del nicho) y la dinámica dispersión-extinción de las especies.

Las relaciones interespecíficas entre el tamaño corporal y la amplitud de distribución han atraído la atención en un contexto macroecológico porque pueden explicar cómo las especies reparten espacio y recursos (Brown y Maurer 1987, 1989; Gaston 1991; Taylor y Gotelli 1994). Esto podría tener consecuencias potencialmente importantes para la conservación (Gaston y Blackburn 1996a, 1996b; Brown *et al.* 1996), especialmente a escalas espaciales globales. Las especies de cuerpo grande con amplitudes de distribución pequeñas son consideradas las principales candidatas para la extinción (Taylor y Gotelli 1994).

Algunos estudios han registrado la existencia de estas relaciones en los ambientes acuáticos. Pyron (1999) registró una relación positiva entre el tamaño corporal y la amplitud de distribución geográfica, la abundancia local y la amplitud de hábitats utilizados para peces dulceacuícolas de América latitudinal range size of elasmobranch species but not between body size and depth. They also suggested that because of the large size of the aplacental or placental viviparous elasmobranch species, they present wider latitudinal range sizes than oviparous species.

This paper provides a macroecological assessment of the relationship between body size and geographic range size (measured as extent and volume of occurrence) of resident elasmobranchs of the Tropical Eastern Pacific (TEP), identifying the differences between sharks and batoids and considering the influence of endemism on this relationship. Species located below the lower boundary of the interspecific relationship between body size and volume of occurrence were identified and their habits, life history traits, and conservation status are discussed.

### MATERIAL AND METHODS

The TEP biogeographic region extends along the west coast of the American continents from the Baja California Peninsula (Mexico) to Cabo Blanco (Peru), encompassing the coastal areas of ten countries and five oceanic islands. The northern and southern continental limits of the region are defined by cold currents that flow from the poles to the equator (Robertson and Allen 2008). In this study we considered the limits (32° N and 8° S) proposed by Mora and Robertson (2005) (fig. 1). Data of maximum body size (cm), maximum and minimum depth (m), and latitudinal distribution of the species in the TEP were obtained from the literature available for the region (table 1). When the catalogues consulted showed different information regarding the characteristics of the species, the highest value recorded for the variables analyzed was used, without discriminating between sexes. As a measure of body size, maximum total length (TL) was used for all species except for batoids of the order Myliobatiformes, for which maximum disc width (DW) was used. Moreover, the presence of the species was assumed to be continuous between their distribution limits (latitude and depth) reported in the literature.

The geographic range size of species was estimated as the extent and volume of occurrence, that is, the area and the volume (extent  $\times$  depth) contained within the outermost limits of a species' occurrence (Gaston 1991, Gaston and Fuller 2009). For this, a grid with squares of  $0.5^{\circ} \times 0.5^{\circ}$  (55.5 × 55.5 km), equivalent to an area of 3080.25 km<sup>2</sup>, was superimposed on a bathymetric map of the TEP (fig. 1). The size of the grid squares was chosen to ascertain as accurately as possible the distribution of the species, since with larger squares (e.g.,  $2^{\circ} \times 2^{\circ}$ ) resolution is lost and the relationships between body size and extent and volume of occurrence may be underestimated. A limit was defined at a distance of 150 km from the coast in continental areas and of 50 km from oceanic islands. Grid squares were counted between the northern and southern limits of the latitudinal distribution of each species, following the premise that species can only occupy squares

del Norte. Macpherson (2003) documentó, para el océano Atlántico, que las especies pelágicas tienen distribuciones geográficas más amplias que las especies bentónicas, que las amplitudes de distribución batimétrica están influenciadas por la latitud y que la regla de Rapoport no se cumple para el área de estudio. Goodwin *et al.* (2005) reportaron una relación positiva entre el tamaño corporal y la amplitud de distribución latitudinal de las especies de elasmobranquios, mas no entre el tamaño de la especie y la profundidad. Estos mismos autores proponen que por el gran tamaño de las especies de elasmobranquios con reproducción vivípara (aplacentaria o placentaria), éstas presentan amplitudes de distribución latitudinal más extensas que las especies de reproducción ovípara.

El presente estudio provee una evaluación macoecológica de las relaciones entre el tamaño corporal y la amplitud de la distribución geográfica (medida como extensión y volumen de ocurrencia) de los elasmobranquios residentes en el Pacífico Oriental Tropical (POT), identificando las diferencias entre tiburones y rayas, y considerando la influencia del endemismo en esta relación. Se identifican las especies ubicadas por debajo del límite inferior de la relación interespecífica entre el tamaño corporal y el volumen de ocurrencia y se discuten sus hábitos, rasgos de historia de vida y estatus de conservación.

### MATERIALES Y MÉTODOS

El POT es una región biogeográfica que comprende la costa continental oeste de América, desde la península de Baja California (México) hasta Cabo Blanco (Perú), e incluye la zona costera de diez países y cinco islas oceánicas. Los límites continentales de la región están definidos al norte y al sur por las corrientes frías que fluyen desde los polos hacia el ecuador (Robertson y Allen 2008). En este trabajo se consideraron los límites (32° N y 8° S) propuestos por Mora y Robertson (2005) (fig. 1). Los datos de tamaño de cuerpo máximo (cm), profundidad mínima y máxima (m) y distribución latitudinal de las especies en el POT se obtuvieron de la literatura disponible para la región (tabla 1). En los casos en que los catálogos consultados presentaban diferente información de las características de las especies, se usó el valor más alto registrado para las variables analizadas, sin discriminar entre sexos. Como medida de tamaño de cuerpo se usó la longitud total máxima (LT) para todas las especies, excepto para las rayas del orden Myliobatiformes, cuya medida adecuada es el ancho del disco máximo (AD). Asimismo, se supuso que la presencia de las especies fue continua entre los límites de su distribución (latitud y profundidad) registrados en la literatura.

La amplitud de distribución geográfica de las especies se evaluó mediante la extensión y el volumen de ocurrencia, esto es, el área y el volumen (extensión × profundidad) comprendidos dentro de los límites más exteriores en los que se presenta una especie (Gaston 1991, Gaston y Fuller 2009). that are within the limits of their depth range. Thus, species restricted to depths of less than 200 m were counted only over the continental shelf, whereas those found between 200 and 1800 m were counted in squares that recorded those depths.

To calculate the extent of occurrence of each species, the number of grid squares obtained for each depth was multiplied by the area of the square (3080.25 km<sup>2</sup>) and these values were then added to obtain a total value in square kilometers. To calculate the volume of occurrence of each species, the extent obtained for each depth (km<sup>2</sup>) was multiplied by the respective depth range (km) and these values were then added to obtain a total value in cubic kilometers. As an example we will describe how the extent and volume of occurrence was calculated for Carcharhinus obscurus, which is distributed in the TEP between 32° N and 19° N and between 0 and 400 m depth (Robertson and Allen 2008). This species was found in 104 grid squares with depths of <200 m and in 77 squares with depths of <1200 m. Hence, the extent of occurrence of this species was calculated as: (104  $\times$  $3080.25 \text{ km}^2$ ) + (77 × 3080.25 km<sup>2</sup>) = 557,525 km<sup>2</sup>. The volume of occurrence was calculated as:  $(104 \times 3080.25 \text{ km}^2 \times$ 0.2 km + (77 × 3080.25 km<sup>2</sup> × 0.4 km) = 158,941 km<sup>3</sup>; in this latter case, the depth range of the species (400 m) and not the maximum depth of the squares (1200 m) was used for the multiplication.



Figure 1. Map of the Tropical Eastern Pacific showing the sampling grid used to calculate the extent and volume of occurrence of the resident shark and batoid species.

**Figura 1.** Mapa del Pacífico Oriental Tropical donde se ilustran los cuadrantes de muestreo utilizados para calcular la extensión y el volumen de ocurrencia de las especies de tiburones y rayas residentes. Para ello, se usó una cuadrícula con cuadrantes de  $0.5^{\circ} \times 0.5^{\circ}$  $(55.5 \times 55.5 \text{ km})$ , equivalentes a un área de 3080.25 km<sup>2</sup>, sobre un mapa de batimetría del POT (fig. 1). El tamaño de los cuadrantes se escogió para tener el mejor detalle posible de la distribución de las especies, ya que con cuadrantes más grandes (e.g.,  $2^{\circ} \times 2^{\circ}$ ) se pierde resolución y se pueden subestimar las relaciones entre tamaño corporal y extensión y volumen de ocurrencia. Se definió un límite a una distancia de 150 km desde la línea de costa en las áreas continentales y de 50 km desde las islas oceánicas. El conteo de cuadrantes se realizó entre los límites norte y sur de la distribución latitudinal de cada especie, siguiendo la premisa de que las especies sólo podían ocupar cuadrantes que estuvieran dentro de los límites de su intervalo de profundidad. Por tanto, las especies cuyo intervalo de profundidad fue inferior a los 200 m sólo fueron contadas sobre la plataforma continental, mientras que las especies ubicadas entre 200 y 1800 m fueron contadas dentro de los cuadrantes que registraban esas profundidades.

Para calcular la extensión de ocurrencia de cada especie, se multiplicó el número de cuadrantes obtenidos para cada profundidad por el área de un cuadrante (3080.25 km<sup>2</sup>), y luego estos valores se sumaron para obtener un valor total en kilómetros cuadrados. Para calcular el volumen de ocurrencia de cada especie, se multiplicó la extensión obtenida para cada profundidad (km<sup>2</sup>) por el intervalo de profundidad respectivo (km), y estos valores se sumaron para obtener un valor total en kilómetros cúbicos. A manera de ejemplo, a continuación se describe el cálculo de la extensión y el volumen de ocurrencia de Carcharhinus obscurus, la cual se distribuye en el POT desde los 32º N hasta los 19º N y entre 0 y 400 m de profundidad (Robertson y Allen 2008). Esta especie se ubicó en 104 cuadrantes con profundidades <200 m y en 77 cuadrantes con profundidades <1200 m. Así, la extensión de ocurrencia de esta especie se calculó como sigue:  $(104 \times$  $3080.25 \text{ km}^2$ ) + (77 × 3080.25 km<sup>2</sup>) = 557,525 km<sup>2</sup>. El volumen de ocurrencia se calculó de la siguiente manera: (104 ×  $3080.25 \text{ km}^2 \times 0.2 \text{ km} + (77 \times 3080.25 \text{ km}^2 \times 0.4 \text{ km}) =$ 158,941 km<sup>3</sup>; note que en este último caso se multiplicó por el intervalo de profundidad de la especie (400 m) y no por la profundidad máxima de los cuadrantes (1200 m).

Para evaluar las diferencias en la distribución de las especies en un gradiente de profundidad con relación al tamaño corporal, se consideraron las zonas batimétricas reconocidas por Smith y Brown (2002), aunque con una pequeña modificación: zona eufótica o epipelágica (0–200 m), zona mesopelágica (200–1000 m) y zona batipelágica (1000–3000 m). Ninguna especie se encontró en la zona abisal; por lo tanto, esta zona no se tomó en cuenta. Las diferencias se evaluaron mediante una prueba no paramétrica de Kruskal Wallis. Las relaciones entre el tamaño corporal y la extensión de ocurrencia, el intervalo de profundidad y el volumen de ocurrencia se analizaron mediante regresiones lineales simples. Finalmente, la relación entre el volumen de ocurrencia y el tamaño corporal se analizó a partir del gráfico de dispersión, considerando las implicaciones conservativas de esta relación

| I DEDENICOS CONSULICO. |
|------------------------|
|                        |

**Tabla 1.** Lista de especies de tiburón (a) y raya (b) residentes (\* especies endémicas) del Pacífico Oriental Tropical; se incluyen sus datos de talla máxima, distribución batimétrica y latitudinal (límites máximos norte y sur), número total de cuadrantes donde ocurre cada una de ellas, valores de la extensión y volumen de ocurrencia calculados para cada especie, y las referencias consultadas.

|                | Species                                           | Max. size | Deptl | h (m) | Latit | ude        | No. of       | Extent             | Volume             | Reference <sup>a</sup>             |
|----------------|---------------------------------------------------|-----------|-------|-------|-------|------------|--------------|--------------------|--------------------|------------------------------------|
|                |                                                   | (cm)      | Min.  | Max.  | North | South      | grid squares | (km <sup>2</sup> ) | (km <sup>3</sup> ) |                                    |
| (a)<br>1       | <b>Hexanchiformes</b><br>Notorynchus cepedianus   | 300       | 0     | 570   | 32    | 8          | 228          | 702 297            | 261 267            | 1, 4, 5, 6, 7, 8, 11, 12           |
| 0              | Squaliformes<br>Centroscyllium nigrum             | 50        | 269   | 1143  | 32    | 8          | 59           | 181 735            | 158 836            | 1, 4, 5, 6, 7, 8, 11, 12           |
| $\mathfrak{c}$ | Squatiniformes<br>Squatina californica            | 152       | 1     | 205   | 32    | 8          | 361          | 1 111 970          | 226 842            | 1, 2, 4, 5, 6, 7, 11, 12, 13       |
| 4              | Heterodontiformes<br>Heterodontus francisci*      | 122       | 1     | 150   | 32    |            | 375          | 1 155 094          | 172 109            | 1, 2, 5, 6, 7, 8, 9, 11, 12, 13    |
| 5              | Heterodontus mexicanus*                           | 70        | 1     | 50    | 31    | 7          | 448          | 1 379 952          | 67 618             | 1, 2, 4, 5, 6, 7, 8, 11, 12, 13    |
| 9              | Heterodontus quoyi                                | 107       | 3     | 40    | ŝ     | 7          | 85           | 261 821            | 9 687              | 1, 4, 6, 7, 8, 9, 11, 12           |
| ٢              | <b>Orectolobiformes</b><br>Ginglymostoma cirratum | 430       | 0     | 130   | 31    | 8          | 461          | 1 419 995          | 184 599            | 1, 4, 5, 6, 7, 8, 9, 11, 12        |
| ×              | Lamniformes                                       | 110       | 10    | 530   | 30 25 | "          | 83           | 755 661            | 80 735             | CI 11 2 1                          |
| ° 6            | Carcharodon carcharias                            | 600       | 0     | 1280  | 32-25 | 2_8<br>2_8 | 222          | 683 816            | 524 628            | 1. 4. 5. 6. 7. 8. 9. 12            |
|                | Carcharhiniformes                                 |           |       |       |       |            |              |                    |                    |                                    |
| 10             | Cephaloscillyum ventriosum                        | 110       | 0     | 460   | 32    | 8          | 270          | 831 668            | 272 048            | 1, 4, 5, 6, 7, 12                  |
| 11             | Mustelus albipinnis*                              | 118       | 30    | 281   | 32    | 25         | 73           | 224 858            | 44 463             | 7                                  |
| 12             | Mustelus californicus                             | 124       | 2     | 95    | 32-18 | I          | 176          | 542 124            | 50418              | 1, 4, 5, 6, 7, 12, 13              |
| 13             | Mustelus dorsalis*                                | 64        | 20    | 200   | 18    | 9          | 297          | 914 834            | 164 670            | 1, 2, 4, 5, 6, 7, 8, 9, 11, 12     |
| 14             | Mustelus henlei                                   | 95        | 0     | 200   | 32    | 7          | 237          | 730 019            | $146\ 004$         | 1, 4, 5, 6, 7, 8, 9, 11, 12, 13    |
| 15             | Mustelus lunulatus*                               | 170       | 10    | 200   | 32    | 5          | 489          | 1506242            | 286 186            | 1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 13 |
| 16             | Mustelus mento                                    | 130       | 15    | 50    | 5     | 8          | 106          | 326 507            | 11 428             | 1, 4, 6, 7, 8, 12                  |
| 17             | Mustelus whitneyi                                 | 87        | 15    | 210   | L     | 8          | 142          | 437 396            | 85 292             | 1, 4, 6, 7, 8, 12                  |
| 18             | Triakis acutipinna*                               | 112       | 50    | 200   | б     | 5          | 73           | 224 858            | 33 729             | 1, 4, 6, 7, 8, 12                  |
| 19             | Triakis maculata                                  | 240       | 10    | 200   | Ι     | 3-8        | 47           | 144 772            | 27 507             | 1, 6, 7, 12                        |
| 20             | Trakis semifasciata                               | 210       | 0     | 156   | 32-17 | I          | 223          | 686 896            | 107 156            | 1, 5, 6, 7, 12                     |
| 21             | Carcharhinus albimarginatus                       | 300       | 0     | 80    | 24    | ю          | 353          | 1 087 328          | 86 986             | 1, 5, 6, 7, 8, 11, 12              |

|     | Species                   | Max. size | Dept | (m) t | Latit | ude   | No. of       | Extent            | Volume             | Reference <sup>a</sup>              |
|-----|---------------------------|-----------|------|-------|-------|-------|--------------|-------------------|--------------------|-------------------------------------|
|     |                           | (cm)      | Min. | Max.  | North | South | grid squares | $(\mathrm{km}^2)$ | (km <sup>3</sup> ) |                                     |
| 22  | Carcharhinus altimus      | 300       | 25   | 500   | 31    | 8     | 413          | 1 272 143         | 420 377            | 1, 2, 4, 5, 6, 7, 8, 9, 12, 13      |
| 23  | Carcharhinus brachyurus   | 325       | 0    | 100   | 32    | 8     | 221          | 680 735           | 68 074             | 1, 4, 5, 6, 7, 8, 12                |
| 24  | Carcharhinus galapagensis | 370       | 0    | 180   | 31    | 7     | 514          | 1 583 249         | 284 985            | 1, 4, 5, 6, 7, 8, 9, 11, 12         |
| 25  | Carcharhinus leucas       | 350       | 0    | 150   | 32    | 8     | 508          | 1 564 767         | 234 715            | 1, 2, 4, 5, 6, 7, 8, 9, 11, 12      |
| 26  | Carcharhinus limbatus     | 275       | 0    | 64    | 32    | 8     | 506          | 1 558 607         | 99 751             | 1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 13  |
| 27  | Carcharhinus obscurus     | 420       | 0    | 400   | 32–19 | I     | 181          | 557 525           | 158 941            | 1, 5, 6, 7, 9, 12, 13               |
| 28  | Carcharhinus porosus      | 150       | 5    | 35    | 31    | 8     | 451          | 1 389 193         | 41 676             | 1, 2, 4, 5, 6, 7, 8, 9, 11, 12      |
| 29  | Galeocerdo cuvier         | 550       | 0    | 140   | 32    | 8     | 555          | 1 709 539         | 239 335            | 1, 4, 5, 6, 7, 8, 9, 11, 12         |
| 30  | Nasolamia velox*          | 150       | 0    | 90    | 31    | 5     | 446          | 1 373 792         | 123 641            | 1, 2, 4, 5, 6, 7, 8, 9, 11, 12      |
| 31  | Negaprion brevirostris    | 340       | 0    | 90    | 31    | 8     | 451          | 1 389 193         | 125 027            | 1, 4, 5, 6, 7, 8, 9, 11, 12         |
| 32  | Rhizoprionodon longurio*  | 154       | 0    | 100   | 32    | 9     | 487          | $1\ 500\ 082$     | $150\ 008$         | 1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 13  |
| 33  | Triaenodon obesus         | 213       | 2    | 300   | 12    | 5     | 168          | 517 482           | 129 260            | 1, 5, 6, 7, 8, 11, 12               |
| 34  | Sphyrna corona*           | 92        | 0    | 100   | 29    | 8     | 404          | $1 \ 244 \ 421$   | 124 442            | 1, 2, 4, 5, 6, 7, 8, 9, 11, 12      |
| 35  | Sphyrna lewini            | 430       | 0    | 190   | 32    | 5     | 490          | 1 509 323         | 286 771            | 1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 13  |
| 36  | Sphyrna media             | 150       | 0    | 100   | 31    | ٢     | 401          | 1 235 180         | 123 518            | 1, 2, 4, 5, 6, 7, 8, 9, 11, 12      |
| 37  | Sphyrna mokarran          | 350       | 1    | 300   | 31    | 8     | 477          | 1 469 279         | 365 213            | 1, 4, 5, 6, 7, 8, 9, 11, 12         |
| 38  | Sphyrna tiburo            | 150       | 0    | 80    | 32    | 9     | 487          | $1\ 500\ 082$     | 120 007            | 1, 2, 4, 5, 6, 7, 8, 9, 11, 12      |
| 39  | Sphyrna zygaena           | 500       | 0    | 200   | 32    | 8     | 542          | 1 669 496         | 333 899            | 1, 4, 5, 6, 7, 8, 9, 12, 13         |
| (q) | Pristiformes              |           |      |       |       |       |              |                   |                    |                                     |
| 1   | Pristis sp.               | 650       | 1    | 10    | 24    | 5     | 329          | 1 013 402         | 9 121              | 1, 2, 3, 4, 7, 8, 9, 10, 11, 12     |
|     | Torpediniformes           |           |      |       |       |       |              |                   |                    |                                     |
| 7   | Diplobatis ommata*        | 25        | 0    | 94    | 28    | 5     | 391          | 1 204 378         | 113 212            | 1, 2, 7, 8, 9, 10, 11, 12, 13       |
| ю   | Narcine entemedor*        | LL        | 0    | 100   | 31    | ٢     | 460          | 1 416 915         | 141 692            | 1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 13 |
| 4   | Narcine leoparda*         | 36        | 5    | 33    | б     | 7     | 26           | 80 087            | 2 242              | 1, 7, 11, 12                        |
| 5   | Narcine vermiculatus*     | 60        | 0    | 100   | 28-7  | I     | 227          | 699 217           | 69 922             | 1, 2, 3, 7, 10, 11, 12              |
| 9   | Torpedo peruana           | 50        | 24   | 170   | 8     | ٢     | 176          | 542 124           | 79 150             | 1, 7, 11, 12                        |
|     | Rajiformes                |           |      |       |       |       |              |                   |                    |                                     |
| ٢   | Raja cortezensis*         | 36        | 15   | 90    | 28–6  | I     | 232          | 714 618           | 53 596             | 1, 3, 7, 10, 12                     |
| ×   | Raja equatorialis*        | 88        | 20   | 200   | 29    | 4     | 371          | 1 142 773         | 205 699            | 1, 2, 3, 4, 7, 8, 9, 10, 11, 12     |
| 6   | Raja velezi*              | 83        | 35   | 300   | 29    | 8     | 384          | 1 182 816         | 255 538            | 1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 13 |
| 10  | Rhinobatos glaucostigma*  | LL<br>LL  | 0    | 50    | 28    | S     | 401          | 1 235 180         | 61 759             | 1, 3, 7, 8, 9, 10, 12               |
| П   | Rhinobatos leucorhynchus* | 63        | 0    | 50    | 30    | ю     | 355          | $1\ 093\ 489$     | 54 674             | 1, 2, 3, 7, 8, 9, 10, 11, 12        |
| 12  | Rhinobatos planiceps*     | LT<br>L   | 0    | 50    | 15    | 8     | 246          | 757 742           | 37 887             | 1, 4, 7, 8, 9, 11, 12               |
| 13  | Rhinobatos prahli*        | 81        | 15   | 70    | 8     | S     | 115          | 354 229           | 19 483             | 1, 7, 8, 11, 12                     |
| 14  | Rhinobatos productus      | 170       | 0    | 91    | 32–16 | I     | 224          | 689 976           | 62 788             | 1, 3, 7, 10, 12, 13                 |

Table 1 (Cont.)

Table 1 (Cont.)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     | Species                                                                                                             | Max. size                          | Depth                        | 1 (m)                     | Latit                       | ude                        | No. of                            | Extent                                          | Volume                                           | Reference <sup>a</sup>                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------|---------------------------|-----------------------------|----------------------------|-----------------------------------|-------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------|
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                                                                                                                     | (cm)                               | Min.                         | Max.                      | North                       | South                      | grid squares                      | $(\mathrm{km}^2)$                               | (km <sup>3</sup> )                               |                                                                          |
| 16   Zapreyx syste**   91   0   25   2   8   339   1044 205   26   105 $17$ Urbadis commentars*   31   1   0   32-15   -   22   757   76   11   1 $17$ Urbadis commentars*   31   1   0   32-15   -   22   1435   1   34   143   1   34   34   143   1   34   143   1   35   1   1   35   1   1   35   1   1   36   1   36   1   36   1   36   1   36   1   36   1   36   1   1   36   1   36   1   36   1   36   1   36   1   1   2   1   1   36   31   1   36   31   1   36   1   1   36   1   1   36   1   1   36   1   1   36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15                                  | Zapteryx exasperata                                                                                                 | <i>L</i> 6                         | 0                            | 200                       | 32-22                       | I                          | 133                               | 409 673                                         | 81 935                                           | 1, 2, 3, 4, 7, 8, 9, 10, 12, 13                                          |
| Nyliobatificures   Noise concentrative   28.3   1   109   32-15   -   229   705 377   76 181   1.3     17   Unbakic concentrative   31   1   0   32-15   -   229   705 377   76 181   1.3     20   Urbakic methers   31   1   0   32-15   -   24   139 256   1.37 202   1.3.2.3     20   Urbakic methers   21   1   20   31-9   -   151   1465   188   102   1.2.33     21   Urbaygen aptitur*   25   10   31   8   444   1367 613   160 601   1.2.2.3     22   Urbaygen made*   23   1   7   8   304   953 956   4101   1.2.2.3     23   Urbaygen made*   15   2   15   8   444   1367 613   1.050   1.2.3.3     24   Urbaygen made*   13   2   15   8   444   1367 665   11.2.3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16                                  | Zapteryx xyster*                                                                                                    | 91                                 | 0                            | 25                        | 22                          | 8                          | 339                               | 1 044 205                                       | 26 105                                           | 1, 7, 11, 12                                                             |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | Myliobatiformes                                                                                                     |                                    |                              |                           |                             |                            |                                   |                                                 |                                                  |                                                                          |
| 18   Undentis Indication   31   1   90   32   3   464   1429   366   13.7202   1.3.7302     20   Undustis numbercentarie*   31   1   33   -   144   137705   11.3.730     21   Unorrygen culturat*   26   1   60   31   8   444   137613   80   600   1.2.1.3.7     22   Unorrygen culturat*   26   1   60   31   8   444   137613   80   600   1.2.1.2.3.     23   Unorygen culturat*   28   0.5   85   17   8   344   137613   80   600   1.2.1.2.3.     24   Unorygen returat*   15   2   15   22-7   -   230   96   9101   1.2.1.2.3.     25   Unorygen returat*   15   2   33   4   193   36   11.1.1.2.3.     26   Unorygen returat*   15   2   33   11.1.7.2.3   4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17                                  | Urobatis concentricus*                                                                                              | 28.3                               | 1                            | 109                       | 32-15                       | I                          | 229                               | 705 377                                         | 76 181                                           | 1, 3, 7, 10, 12, 13                                                      |
| 19   Unbasis maculatus <sup>4</sup> 26   1   30   31-19   -   151   465 118   13 48     20   Urbariz maculatus <sup>4</sup> 21   10   3   5   24   73 395   1465   1     21   Urbrizgon applitura <sup>4</sup> 23   1   6   31   8   444   1367 651   80 690   1,2,3,     22   Urbrizgon applitura <sup>4</sup> 23   0   36   36   444   1367 651   80 690   1,2,3,     23   Urbrizgon numd <sup>4</sup> 15   2   15   22   1   4   419   120 655   36137   1,2,3,     24   Urbrizgon numd <sup>4</sup> 15   2   15   22   1   4   419   120 655   36137   1,2,3,     25   Urbrizgon numd <sup>4</sup> 15   2   15   8   -   20   706 458   30   1,1   2,3,3     26   Urbrizgon numd <sup>4</sup> 15   2   1   4   419   120 651 <td>18</td> <td>Urobatis halleri*</td> <td>31</td> <td>1</td> <td>90</td> <td>32</td> <td>б</td> <td>464</td> <td>1 429 236</td> <td>127 202</td> <td>1, 3, 7, 8, 9, 10, 11, 12, 13</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18                                  | Urobatis halleri*                                                                                                   | 31                                 | 1                            | 90                        | 32                          | б                          | 464                               | 1 429 236                                       | 127 202                                          | 1, 3, 7, 8, 9, 10, 11, 12, 13                                            |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19                                  | Urobatis maculatus*                                                                                                 | 26                                 | 1                            | 30                        | 31 - 19                     | I                          | 151                               | 465 118                                         | 13 488                                           | 1, 7, 10, 12                                                             |
| 21   Unorygon acylitars*   23   5   100   24   6   351   1081   168   102711   1, 2, 3, 3     22   Urorygon cinar*   26   1   60   31   8   444   137631   80   900   1, 2, 1, 2, 3, 2, 3     23   Urorygon made*   24   4   5   1   17   8   94   95306   4011   1, 2, 1, 2, 3, 3, 3     24   Urorygon made*   15   2   15   22-7   -   230   708   4301   1, 2, 1, 2, 3, 3     25   Urorygon retricular*   13   2   15   2   14   419   1206   501   1, 2, 3, 3     28   Urorygon retricular*   13, 7   0   20   2   36   37   1, 2, 3, 3     29   Dayaris dipterma*   122   0   100   27   3   36   36   1, 2, 3, 3     30   Dayaris dipterma*   122   3   36   4   47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20                                  | Urobatis tumbescensis*                                                                                              | 41                                 | 1                            | 20                        | б                           | 5                          | 24                                | 73 926                                          | 1 405                                            | 1, 4, 7, 8, 11, 12                                                       |
| 22   Urarrygen chilensis*   26   1   60   31   8   444   1567 651   80 690   1, 2.3     23   Urarygen imma*   38   0.5   85   13-6   -   75   231 019   19 231     24   Urarygen mud*   13   2   15   2   15   8-6   -   230   708 458   441011   1, 2.3     25   Urarygen mud*   13   2   15   8-6   -   20   61 605   801   11, 2.3     26   Urarygen mud*   13   2   15   8-6   -   20   61 605   801   1, 2.3     28   Urarygen sindutary*   15   2   15   8-6   -   21 4   199   100   1, 2.3     29   Dasyatis diprerud*   117   0   100   27   3   380   1170 495   11.25   1, 3, 4     30   Dasyatis digrerud*   122   0   30   10   7   7 </td <td>21</td> <td>Urotrygon aspidura*</td> <td>23</td> <td>5</td> <td>100</td> <td>24</td> <td>9</td> <td>351</td> <td>1 081 168</td> <td>102 711</td> <td>1, 2, 3, 4, 7, 8, 9, 10, 11, 12</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21                                  | Urotrygon aspidura*                                                                                                 | 23                                 | 5                            | 100                       | 24                          | 9                          | 351                               | 1 081 168                                       | 102 711                                          | 1, 2, 3, 4, 7, 8, 9, 10, 11, 12                                          |
| 23   Urarygen cimar*   38   0.5   85   13-6   -   75   231 019   19521     24   Urarygen mada*   15   2   15   22-7   -   230   708 458   9210   1     25   Urarygen retidua*   15   2   15   22-7   -   230   708 458   9210   1   1     26   Urarygen retidua*   15   2   15   8   -   20   61605   8611   1   2.3     26   Urarygen retudua*   15   2   15   8   -   21   64 685   841   1   2.3   1   2.3   1   2.3   1   2.3   1   2.3   1   2.3   1   2.3   1   2.3   1   2.3   1   2.3   3   1   2.3   3   1   2.3   3   1   2.3   3   1   2.3   3   1   2.3   3   1   2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22                                  | Urotrygon chilensis*                                                                                                | 26                                 | 1                            | 60                        | 31                          | 8                          | 444                               | 1 367 631                                       | 80 690                                           | 1, 2, 3, 4, 7, 8, 10, 11, 12                                             |
| 24   Urorrygon munda*   24   51   17   8   304   936 396   44 011   1, 2, 2     25   Urorygon mund*   15   2   15   2   15   2   15   2   15   2   11   1, 2, 3     26   Urorygon reticulata*   13   2   15   8   -   2   0   61605   801   11, 2, 3     28   Urorygon reticulata*   15   2   15   8   -   41   12   10655   811   1, 2, 3     28   Urorygon serula   187   0   20   3   3   14   110   1, 2, 3     30   Dasyatis diperua*   117   0   100   27   3   380   1170495   11, 259   1, 2, 3, 4     31   Dasyatis diperua*   122   0   30   20   20   1, 230   1, 1, 2, 3     33   Gymma memora*   117   0   100   27   3   1, 230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23                                  | Urotrygon cimar*                                                                                                    | 38                                 | 0.5                          | 85                        | 13-6                        | I                          | 75                                | 231 019                                         | 19 521                                           | 1, 7, 12                                                                 |
| 25   Urarrygon nara*   15   2   15   22-7   -   230   708 458   9 210   1     26   Urarrygon reticulata*   13   2   15   8-6   -   20   61 665   801     28   Urarrygon simularitix*   15   2   15   2   4419   1290 625   36137   1, 2, 3, 4     29   Urarrygon simularitix*   15   2   15   2   4419   1290 625   36137   1, 2, 3, 4     30   Dasyaits diperture*   187   0   20   2   36   37   1, 2, 3, 4     31   Dasyaits diperture*   127   0   20   21-1   -   224   18   1, 2, 3, 4     33   Gymmura crehripunctata*   39   0   30   21-1   -   224   13, 3, 4   1, 2, 3, 4     33   Gymmura crehripunctata*   30   10   7   77   231 49   11, 2, 3, 4   1, 2, 3, 4     34   Gymmura rehriperor*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24                                  | $Urotrygon\ munda^*$                                                                                                | 24                                 | 4                            | 51                        | 17                          | 8                          | 304                               | 936 396                                         | 44 011                                           | 1, 2, 3, 4, 7, 8, 10, 11, 12                                             |
| 26   Urorygon vericulara*   13   2   15   8-6   -   20   61   605   801     27   Urorygon verticulara*   13   2   15   2   30   31   4   419   1290   565   36137   1, 2, 3,     28   Urorygon vertula   187   0   20   -   47   9   21562   36137   1, 2, 3,     29   Urorygon vertula   187   0   20   -   477   9   21562   431   1, 2, 3,     30   Dasyatis longa*   117   0   100   27   3   380   117059   1, 2, 3,     31   Dasyatis longa*   39   0   31   6   397   1, 23, 3   3     33   Gymmar aflerae*   39   0   31   6   397   1, 23, 3   3   666   1, 3, 4     33   Gymmar aflerae*   39   0   31   6   397   1, 222, 859   36686 <td>25</td> <td>Urotrygon nana<sup>*</sup></td> <td>15</td> <td>2</td> <td>15</td> <td>22–7</td> <td>I</td> <td>230</td> <td>708 458</td> <td>9 210</td> <td>1, 2, 3, 7, 10, 12</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25                                  | Urotrygon nana <sup>*</sup>                                                                                         | 15                                 | 2                            | 15                        | 22–7                        | I                          | 230                               | 708 458                                         | 9 210                                            | 1, 2, 3, 7, 10, 12                                                       |
| 27Urotrygon rogerst*2823031441912906253613711.228Urorrygon simularrix*15215841191296361371.229Urorrygon serrula18.7020- $4-7$ 921562361371.23.30Dasyatis lopga*11701002733801170501.2, 3.3.31Busyatis lopga*11701002733801170501.2, 3.3.33Gymmura digreva*3903021-1-224689760.6991.3.33Gymmura digreva*3903021-1-224689761.3.34Gymmura digreva*390303163971.2.3.41.3.35Gymmura digreva*1220303163971.2.3.41.3.36Arobauns narinari25011083225477469431.3.37Myliobatis californica18011083225477469431.3.38Myliobatis californica18011083225477469431.3.37Myliobatis californica1801108322547740751.2.2.3.438Myliobatis californica18011 <td>26</td> <td>Urotrygon reticulata*</td> <td>13</td> <td>2</td> <td>15</td> <td>8–6</td> <td>I</td> <td>20</td> <td>61 605</td> <td>801</td> <td>1, 7, 10, 12</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 26                                  | Urotrygon reticulata*                                                                                               | 13                                 | 2                            | 15                        | 8–6                         | I                          | 20                                | 61 605                                          | 801                                              | 1, 7, 10, 12                                                             |
| 28   Uronrygon simularity*   15   2   15   8-6   -   21   64.685   841     29   Uronrygon serrula   18.7   0   20   - $4-7$ 9   21562   431     30   Dasyatis diprenur*   112   0   70   32   8   516   1589.409   111.259   1, 2, 3, 3     31   Dasyatis diprenur*   117   0   30   21-1   -   224   689.976   20699   1, 2, 3, 3     33   Gymmura offica*   62   0   30   21-1   -   224   689.976   20699   1, 3, 4     33   Gymmura offica*   39   0   30   31   6   397   1, 32, 3   1, 3, 4     34   Gymmura offica*   122   0   30   31   6   477   469   1, 3, 4     35   Gymmura offica*   33   1   103   1122   30   1, 3, 4   1, 3, 4     36   Aer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 27                                  | Urotrygon rogersi*                                                                                                  | 28                                 | 2                            | 30                        | 31                          | 4                          | 419                               | 1 290 625                                       | 36 137                                           | 1, 2, 3, 7, 8, 10, 11, 12                                                |
| 29   Urorrygon serrula   18.7   0   20   -   4-7   9   21562   431     30   Dasyatis dipterura*   112   0   70   32   8   516   1589   409   111259   1,2,3,3     31   Dasyatis longa*   117   0   100   27   3   380   1170495   11,7050   1,2,3,3     32   Himanura pacifica*   62   0   30   21-1   -   224   689   76   20   1,3,4     33   Gymmura differa*   39   0   30   31   6   397   1122859   36.686   1,3,4     35   Gymmura memorata*   122   0   30   31   6   397   122859   36.686   1,3,4     36   Aetobatus memorata*   122   0   30   31   6   397   1472360   116.316   1,3,4     37   Myliobatis californica   180   1   80   32   55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28                                  | Urotrygon simulatrix*                                                                                               | 15                                 | 2                            | 15                        | 8–6                         | I                          | 21                                | 64 685                                          | 841                                              | 1, 7, 10, 12                                                             |
| 30   Dasyais dipterua*   122   0   70   32   8   516   1 589 409   111 259   1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 29                                  | Urotrygon serrula                                                                                                   | 18.7                               | 0                            | 20                        | I                           | 4-7                        | 6                                 | 21 562                                          | 431                                              | 1, 4, 7, 9, 12                                                           |
| 31Dasyatis longa*117010027338011701501, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30                                  | Dasyatis dipterura*                                                                                                 | 122                                | 0                            | 70                        | 32                          | 8                          | 516                               | $1\ 589\ 409$                                   | 111 259                                          | 1, 2, 3, 7, 8, 9, 10, 11, 12, 13                                         |
| 32Himanura pacifica*62030 $21-1$ - $224$ 68976206991.733Gymmura apterae*390301077723717971157134Gymmura apterae*390303163971<222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 31                                  | Dasyatis longa*                                                                                                     | 117                                | 0                            | 100                       | 27                          | б                          | 380                               | 1  170  495                                     | 117 050                                          | 1, 2, 3, 7, 8, 9, 10, 11, 12, 13                                         |
| 33 $Gymmara$ diherae*3903010777237715711534 $Gymmara$ crebripunctata*390303163971122285.66135 $Gymmara$ marmorata*1220303285081156476746.9431, 2, 3, 436 $Aetobatis californica$ 12203032547814723601161, 2, 3, 437 $Myliobatis californica$ 180110832-23-161495<920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 32                                  | $H$ imantura pacifica $^{st}$                                                                                       | 62                                 | 0                            | 30                        | 21 - 1                      | I                          | 224                               | 689 976                                         | 20 699                                           | 1, 2, 3, 7, 10, 11, 12                                                   |
| 34 <i>Gymma crebripunctaat</i> *390303163971 22285866135 <i>Gymma mamorat</i> *1220303285081 56476746431, 3, 436 <i>Aerobatus narinari</i> 2501803254781 47236011631, 2, 3, 437 <i>Myliobatis californica</i> 180110832-23-16149592053631, 1, 2, 3, 438 <i>Myliobatis californica</i> 18015031-22-1705236431, 2, 3, 438 <i>Myliobatis californica</i> 18015031-22-1705236581, 2, 3, 439 <i>Preromylaeus asperimus</i> *7915031-22-2783167407540 <i>Rhinoptera steindachneri</i> *1070303164931, 32, 31642.9691, 3, 441 <i>Manta birostris</i> 8000303254551, 2, 3, 43, 442 <i>Mobula nunkiana</i> *2000303254551, 3, 43, 443 <i>Mobula nunkiana</i> *2000303254381, 45851, 3, 443 <i>Mobula nunkiana</i> *2000303254381, 3491, 3, 444 <i>Antu nunkiana</i> *20003032543                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 33                                  | Gymnura afuerae*                                                                                                    | 39                                 | 0                            | 30                        | 10                          | 7                          | LT                                | 237 179                                         | 7 115                                            | 1, 7, 8, 9, 12                                                           |
| 35 <i>Gymnura marmorata*</i> 1220303285081 564 76746 9431, 3, 436 <i>Aetobatus narinari</i> 2501803254781472 360116 3161, 2, 3, 437 <i>Myliobatis californica</i> 180110832-23-161495 92053 0631,38 <i>Myliobatis longirostris*</i> 95150 $31-22$ -170523 64325 6581,39 <i>Preromylaeus asperrimus*</i> 79150 $8-6$ -2783 167407540 <i>Rhinoptera steindachneri*</i> 1070303154651, 3, 45571, 2, 3, 441 <i>Manta birostris</i> 8000303154651, 432 31642 9691, 3, 455742 <i>Mobula hurstoni</i> 18001002853721145 85311, 3, 443 <i>Mobula murkiana*</i> 2000303254381, 3, 44 <i>Mobula murkiana*</i> 2000303254381, 3, 44 <i>Anta birostris</i> 2000303254381, 3, 44 <i>Anta birostris</i> 1145 8531145 8531, 3, 43, 43, 44 <i>Anta birostris</i> 2000303254381, 3, 44 <i>Anta birostris</i> 2000303254381, 3, 4 </td <td>34</td> <td>Gymnura crebripunctata*</td> <td>39</td> <td>0</td> <td>30</td> <td>31</td> <td>9</td> <td>397</td> <td>1 222 859</td> <td>36 686</td> <td>1, 3, 7, 8, 10, 12</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 34                                  | Gymnura crebripunctata*                                                                                             | 39                                 | 0                            | 30                        | 31                          | 9                          | 397                               | 1 222 859                                       | 36 686                                           | 1, 3, 7, 8, 10, 12                                                       |
| 36Aetobatus narinari25018032547814723601163161, 2, 3, 437Myliobatis californica180110832-23-161495920530631,38Myliobatis longirostris*9515031-22-17052364325<658                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 35                                  | Gymnura marmorata*                                                                                                  | 122                                | 0                            | 30                        | 32                          | 8                          | 508                               | 1 564 767                                       | 46 943                                           | 1, 3, 4, 7, 8, 9, 11, 12, 13                                             |
| 37Myliobatis californica1801108 $32-23$ -1614952005353631,38Myliobatis longirostris*95150 $31-22$ -170 $523$ 643255581,39Pteromylaeus asperimus*79150 $31-22$ -2783167407540Rhinoptera steindachneri*107030316493151856345571, 2, 3, 441Manta birostris800030315465143231642<969                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 36                                  | Aetobatus narinari                                                                                                  | 250                                | 1                            | 80                        | 32                          | S                          | 478                               | $1\ 472\ 360$                                   | 116 316                                          | 1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 13                                      |
| 38Myliobatis longirostris*95150 $31-22$ -170523643255581,39Pteromylaeus asperrimus*79150 $8-6$ -27 $83$ 167407540Rhinoptera steindachmeri*107030316493151856345571, 2, 3, 441Manta birostris800030315465142<969                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 37                                  | Myliobatis californica                                                                                              | 180                                | 1                            | 108                       | 32–23                       | I                          | 161                               | 495 920                                         | 53 063                                           | 1, 3, 7, 10, 12, 13                                                      |
| 39Pteromylaeus asperrimus*79150 $8-6$ -2783167407540Rhinoptera steindachneri*1070303164931518563455771, 2, 3, 441Manta birostris8000303154651429691, 3, 442Mobula thurstoni180010028537211458531, 3, 443Mobula munkiana*2000303254381349150404741, 3, 4 $a^1$ . Allen and Robertson (1998), 2. Bussing and López (1983), 3. Castro-Aguirre and Espinosa (1996), 4. Chirichigno and Cornejo (2001), 5. Espinosa <i>et al.</i> (2004), 6. C7. Froese and Pauly (2009), 8. Linévez-Prado and Béarez (2004), 9. Massay (1983), 10. McEachran and di Sciara (1995), 11. Mejía-Falla <i>et al.</i> (2007), 12. Robertson a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 38                                  | Myliobatis longirostris*                                                                                            | 95                                 | 1                            | 50                        | 31–22                       | I                          | 170                               | 523 643                                         | 25 658                                           | 1, 3, 4, 7, 8, 10, 12                                                    |
| 40Rhinoptera steindachneri*1070303164931518 56345 5571, 2, 3, 441Manta birostris8000303154651432 31642 9691, 3, 342Mobula thurstoni18001002853721145 853114 5851, 3, 443Mobula munkiana*2000303254381 349 15040 4741, 3, 4 $a^1$ . Allen and Robertson (1998), 2. Bussing and López (1983), 3. Castro-Aguirre and Espinosa (1996), 4. Chirichigno and Cornejo (2001), 5. Espinosa <i>et al.</i> (2004), 6. C7. Froese and Pauly (2009), 8. Liménez-Prado and Béarez (2004), 9. Massay (1983), 10. McEachran and di Sciara (1995), 11. Mejía-Falla <i>et al.</i> (2007), 12. Robertson and the start of the st                 | 39                                  | Pteromylaeus asperrimus*                                                                                            | 79                                 | 1                            | 50                        | 8–6                         | I                          | 27                                | 83 167                                          | 4 075                                            | 1, 3, 7, 10, 12                                                          |
| 41Manta birostris8000303154651432316429691, 3, 442Mobula thurstoni180010028537211458531, 3, 443Mobula murkiana*2000303254381349150404741, 3, 4 $a^1$ 1. Allen and Robertson (1998), 2. Bussing and López (1983), 3. Castro-Aguirre and Espinosa (1996), 4. Chirichigno and Cornejo (2001), 5. Espinosa <i>et al.</i> (2004), 6. C7. Froese and Pauly (2009), 8. Jiménez-Prado and Béarez (2004), 9. Massay (1983), 10. McEachran and di Sciara (1995), 11. Mejía-Falla <i>et al.</i> (2007), 12. Robertson and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40                                  | Rhinoptera steindachneri*                                                                                           | 107                                | 0                            | 30                        | 31                          | 9                          | 493                               | 1 518 563                                       | 45 557                                           | 1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 13                                      |
| 42 Mobula thurstoni 180 0 100 28 5 372 1 145 853 1, 3, 4   43 Mobula munkiana* 200 0 30 32 5 438 1 349 150 40 474 1, 3, 4 <sup>a</sup> 1. Allen and Robertson (1998), 2. Bussing and López (1983), 3. Castro-Aguirre and Espinosa (1996), 4. Chirichigno and Correjo (2001), 5. Espinosa <i>et al.</i> (2004), 6. C   7. Froese and Pauly (2009), 8. Jiménez-Prado and Béarez (2004), 9. Massay (1983), 10. McEachran and di Sciara (1995), 11. Mejía-Falla <i>et al.</i> (2007), 12. Robertson and an et al. (2007), 12. Robertson and et al. (2007), 12. Robertson an et al. (2007), 12. Robertson and et al. (2007), 13. Robertson and et al. (2007), 14. Robertson and et al. (2007), 14. Robertson an et al. (2007), 15. Robertson and et al. (2007), 15. Robertson an et al. (2007), 15. Robertson and et al. (2007), 15. Robertson and et al. (2007), 15. Robertson an etal. (2007), 15. Robertson etal. (2007), 15. Robertson et | 41                                  | Manta birostris                                                                                                     | 800                                | 0                            | 30                        | 31                          | S                          | 465                               | 1 432 316                                       | 42 969                                           | 1, 3, 4, 7, 8, 10, 11, 12                                                |
| 43 Mobula munkiana* 200 0 30 32 5 438 1 349 150 40 474 1, 3, 4 $a^{1}$ 1. Allen and Robertson (1998), 2. Bussing and López (1983), 3. Castro-Aguirre and Espinosa (1996), 4. Chirichigno and Correjo (2001), 5. Espinosa <i>et al.</i> (2004), 6. C   7. Froese and Pauly (2009), 8. Jiménez-Prado and Béarez (2004), 9. Massay (1983), 10. McEachran and di Sciara (1995), 11. Mejía-Falla <i>et al.</i> (2007), 12. Robertson a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 42                                  | Mobula thurstoni                                                                                                    | 180                                | 0                            | 100                       | 28                          | 5                          | 372                               | 1 145 853                                       | 114 585                                          | 1, 3, 4, 7, 8, 9, 10, 11, 12                                             |
| <sup>a</sup> 1. Allen and Robertson (1998), 2. Bussing and López (1983), 3. Castro-Aguirre and Espinosa (1996), 4. Chirichigno and Cornejo (2001), 5. Espinosa <i>et al.</i> (2004), 6. C<br>7. Froese and Pauly (2009), 8. Jiménez-Prado and Béarez (2004), 9. Massay (1983), 10. McEachran and di Sciara (1995), 11. Mejía-Falla <i>et al.</i> (2007), 12. Robertson a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 43                                  | Mobula munkiana*                                                                                                    | 200                                | 0                            | 30                        | 32                          | 5                          | 438                               | 1 349 150                                       | 40 474                                           | 1, 3, 4, 7, 8, 10, 11, 12, 13                                            |
| 13. Santana-Morales et al. (2004)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <sup>a</sup> 1. A<br>7. Fr<br>13. S | llen and Robertson (1998), 2. Bussin<br>oese and Pauly (2009), 8. Jiménez-P<br>'antana-Morales <i>et al.</i> (2004) | g and López (19<br>rado and Béarez | 83), 3. Cast<br>(2004), 9. ] | tro-Aguirre<br>Massay (19 | and Espinos<br>83), 10. McE | a (1996), 4.<br>achran and | Chirichigno and di Sciara (1995), | Cornejo (2001), 5.<br>11. Mejía-Falla <i>et</i> | Espinosa <i>et al.</i><br><i>al.</i> (2007), 12. | (2004), 6. Compagno <i>et al.</i> (1995),<br>Robertson and Allen (2008), |

Mejía-Falla and Navia: Body size and distribution of elasmobranchs in the Tropical Eastern Pacific

To evaluate the differences in the distribution of species in a depth gradient in relation to body size, the bathymetric zones determined by Smith and Brown (2002) were considered with a minor modification: euphotic or epipelagic zone (0-200 m), mesopelagic zone (200-1000 m), and bathypelagic zone (1000-3000 m). As no species occurred in the abyssal zone, it was not considered. Differences were evaluated by the nonparametric Kruskal-Wallis test. The relationships between body size and extent of occurrence, depth range, and volume of occurrence were analyzed by simple linear regression. Finally, a scatter plot was used to analyze the relationship between body size and volume of occurrence, considering the conservation implications of this interspecific relationship raised by Gaston and Blackburn (1996a). All data (body size, depth, extent, and volume) were normalized by log transformation.

For this study, only the resident shark and batoid species in the TEP were considered. Vagrant species (those typically found outside the TEP and rarely within it) and exclusively oceanic species (e.g., Prionace glauca, Carcharhinus longimanus, among others) were excluded, following the criteria proposed by Robertson and Allen (2008). The presence of vagrant species in the TEP coincides with extreme weather events (e.g., El Niño and La Niña) that produce a temporary extension of the lower and upper limits of their distribution, while oceanic species present circumglobal or circumtropical distribution patterns and thus exceed the limits considered in this study. Both situations introduce bias by underestimating the relationship between maximum body size and the extent and volume of occurrence, and may alter the interpretation of the results. In this study we thus analyzed information on 82 resident species of the TEP (39 sharks and 43 batoids), corresponding to 82.83% of the elasmobranch species recorded for this biogeographic area. As sharks and batoids exhibit morphological differences contributing to differences in mobility and dispersion, and hence in distribution, each group was analyzed separately. Moreover, as endemic species can be more vulnerable (Primack and Ros 2002), the same analyses were made considering only the 43 endemic species (9 sharks and 34 batoids). Results are therefore presented for four groups: resident sharks, resident batoids, endemic sharks, and endemic batoids. The "resident" and "endemic" categories are not mutually exclusive because the former includes both endemic and non-endemic species. The species analyzed and the variables used and calculated are shown in table 1.

## RESULTS

#### Extent of occurrence

A positive relationship between body size and extent of occurrence was found for both sharks and batoids (fig. 2a–d), but it was significant only for resident and endemic batoids (fig. 2b, d).

interespecífica planteadas por Gaston y Blackburn (1996a). Todos los datos (talla, profundidad, extensión y volumen) se normalizaron mediante la transformación logarítmica.

Para este estudio, se consideraron sólo las especies de tiburones y rayas residentes del POT. Se excluyeron las especies consideradas "vagabundas" (especies que se localizan típicamente fuera del POT y raramente dentro del mismo) y aquellas de hábitos exclusivamente oceánicos (e.g., Prionace glauca, Carcharhinus longimanus, entre otras), según los criterios de Robertson y Allen (2008). La presencia de las especies "vagabundas" en el POT coincide con eventos climáticos extremos (e.g., los fenómenos de El Niño y La Niña) que llevan a una extensión temporal de los límites inferiores o superiores de sus distribuciones, mientras que las especies oceánicas presentan patrones de distribución circumglobal o circumtropical y, por tanto, exceden los límites considerados en este estudio. Estas dos situaciones introducen sesgo al subestimar la relación entre el tamaño corporal máximo vs la extensión y volumen de ocurrencia, y pueden alterar la interpretación de los resultados. En este trabajo se analiza la información de 82 especies residentes del POT (39 tiburones y 43 rayas), correspondientes al 82.83% de las especies de elasmobranquios registradas para esta área biogeográfica. Dado que los tiburones y las rayas exhiben diferencias morfológicas que llevan a diferencias en su capacidad de movilidad y dispersión, y por ende en su distribución, los análisis se realizaron para cada grupo por separado. Asimismo, dado que las especies endémicas pueden ser más vulnerables (Primack y Ros 2002), se realizaron los mismos análisis considerando sólo las 43 especies endémicas del POT (9 de tiburones y 34 de rayas). Los resultados se muestran entonces para cuatro grupos: tiburones residentes, rayas residentes, tiburones endémicos y rayas endémicas. Las categorías "residentes" y "endémicas" no son mutuamente excluyentes, pues la primera incluye tanto las especies endémicas como no endémicas. Las especies analizadas y las variables utilizadas y calculadas se muestran en la tabla 1.

## RESULTADOS

#### Extensión de ocurrencia

Se observó una relación positiva entre el tamaño corporal y la extensión de ocurrencia tanto para tiburones como para rayas (fig. 2a–d), pero sólo fue significativa para las rayas residentes y endémicas (fig. 2b, d).

### Profundidad

No se encontraron diferencias significativas entre el tamaño corporal y las zonas batimétricas ocupadas por los tiburones residentes (KW-H<sub>(3, n=39)</sub> = 5.77, P = 0.123), los cuales se encontraron principalmente en las zonas epipelágica y mesopelágica; sólo dos especies se encontraron en la zona

#### Depth

There were no significant differences between body size and the bathymetric zones occupied by resident sharks (KW-H<sub>(3, n=39)</sub> = 5.77, P = 0.123), which were primarily found in the epipelagic and mesopelagic zones, only two species inhabiting the bathypelagic zone (fig. 3a): *Carcharodon carcharias* (600 cm TL) and *Centroscyllium nigrum* (50 cm TL). Endemic sharks as well as resident and endemic batoids were found almost exclusively in the epipelagic zone, except *Mustelus albipinis* and *Raja velezi* (fig. 3b–d), which occur at depths of up to 280 and 300 m, respectively.

All shark and batoid species (resident and endemic) showed a positive relationship between body size and depth range. This relationship was not significant for any group and it was weaker for the batoids (fig. 4a–d).

batipelágica (fig. 3a): *Carcharodon carcharias* (600 cm LT) y *Centroscyllium nigrum* (50 cm LT). Los tiburones endémicos y las rayas (tanto residentes como endémicas) se ubicaron casi exclusivamente en la zona eufótica, a excepción de *Mustelus albipinis* y *Raja velezi* (fig. 3b–d), que habitan hasta los 280 y 300 m de profundidad, respectivamente.

Todas las especies de tiburones y rayas (residentes y endémicas) presentaron una relación positiva entre el tamaño corporal y el intervalo de profundidad; sin embargo, esta relación no fue significativa para ningún grupo y fue más débil para las rayas (fig. 4a–d).

#### Volumen de ocurrencia

Las relaciones lineales entre el tamaño corporal y el volumen de ocurrencia fueron significativas sólo para los





Figura 2. Relación entre el tamaño corporal máximo (Ms) y la extensión de ocurrencia (EOO) de las especies residentes y endémicas de tiburón  $(\mathbf{a}, \mathbf{c})$  y de raya  $(\mathbf{b}, \mathbf{d})$  del Pacífico Oriental Tropical.

#### Volume of occurrence

The linear relationships between body size and volume of occurrence were significant only for resident sharks ( $r^2 = 0.328$ , P < 0.001). This interspecific relationship, however, seems to exhibit an approximate triangular shape (fig. 5). The upper boundary is imposed by the highest volume of occurrence calculated (524.628 km<sup>3</sup>, corresponding to *Carcharodon carcharias*); the left boundary is imposed by the body size of the smallest species, in this case *Urotrygon reticulata*; and the diagonal or constraint line indicates that the volume of occurrence of species increased with body size. Hence, 22 species (13 sharks and 9 batoids), identified as species susceptible to local extinction in the TEP, were below the constraint line (fig. 5, table 2). Two of them, tiburones residentes ( $r^2 = 0.328$ , P < 0.001). Sin embargo, esta relación interespecífica parece exhibir una forma aproximadamente triangular (fig. 5). El límite superior es impuesto por el mayor volumen de ocurrencia calculado (524.628 km<sup>3</sup>, correspondiente a *Carcharodon carcharias*); el límite izquierdo está dado por el tamaño corporal de la especie más pequeña, en este caso *Urotrygon reticulata*; y la diagonal o línea limitante indica que el volumen de ocurrencia de las especies se incrementa con el tamaño corporal. De esta forma, 22 especies (13 de tiburones y 9 de rayas), identificadas como especies propensas a la extinción local en el POT, quedaron por debajo de la línea limitante (fig. 5, tabla 2). Dos de estas especies, *Pristis* sp. y *Manta birostris*, presentaron la relación tamaño corporal (650 y 800 cm, respectivamente) *vs* volumen de ocurrencia (9,121 y



**Figure 3.** Relationship between body size and the bathymetric zones occupied by resident and endemic shark species (**a**, **c**) and by resident and endemic batoid species (**b**, **d**) of the Tropical Eastern Pacific: E = euphotic or epipelagic zone (0–200 m), M = mesopelagic zone (200–1000 m), and B = bathypelagic zone (1000–3000 m); combined letters indicate the depth range considered.

**Figura 3.** Relación entre el tamaño corporal y las zonas batimétricas ocupadas por las especies residentes y endémicas de tiburón (**a**, **c**) y de raya (**b**, **d**) del Pacífico Oriental Tropical: E = zona eufótica o epipelágica (0–200 m), M = zona mesopelágica (200–1000 m) y B = zona batipelágica (1000–3000 m); las letras combinadas indican el intervalo de profundidad considerado.

*Pristis* sp. and *Manta birostris*, presented the most extreme body size (650 and 800 cm, respectively) *vs* volume of occurrence (9,121 and 42,969 km<sup>3</sup>, respectively) relationship (fig. 5). These 22 species belong to different orders, are of different sizes (between 15 and 800 cm), present diverse modes of reproduction, attain sexual maturity between 49% and 85% of maximum size, and have longevities between 10 and 70 years. Five of them are endemic and all (except *Urotrygon serrula*) fall into some kind of threat category of the International Union for Conservation of Nature (IUCN) (table 2).

#### DISCUSSION

Despite the positive relationships between body size and depth, extent of occurrence, and volume of occurrence, differences were observed in these relationships among 42,969 km<sup>3</sup>, respectivamente) más extrema (fig. 5). Estas 22 especies pertenecen a diversos órdenes, son de tamaños variados (entre 15 y 800 cm), presentan diversos modos de reproducción, alcanzan la madurez entre el 49% y el 85% de la talla máxima y presentan longevidades entre 10 y 70 años. Cinco de estas especies son endémicas y todas (excepto *Urotrygon serrula*) presentan alguna categoría de amenaza, según los criterios de la Unión Internacional para la Conservación de la Naturaleza (IUCN) (tabla 2).

## DISCUSIÓN

A pesar de las relaciones positivas entre el tamaño corporal y la profundidad, la extensión de ocurrencia y el volumen de ocurrencia, se presentaron diferencias en estas relaciones entre tiburones y rayas. Estas diferencias pueden ser explicadas por las diferentes presiones selectivas que actúan sobre el



Figure 4. Relationship between maximum body size (Ms) and the depth range (DR) occupied by resident and endemic shark species (**a**, **c**) and by resident and endemic batoid species (**b**, **d**) of the Tropical Eastern Pacific.

**Figura 4.** Relación entre el tamaño corporal máximo (Ms) y el intervalo de profundidad (DR) donde se distribuyen las especies residentes y endémicas de tiburón ( $\mathbf{a}, \mathbf{c}$ ) y de raya ( $\mathbf{b}, \mathbf{d}$ ) del Pacífico Oriental Tropical.



**Figure 5.** Relationship between body size and volume of occurrence of resident sharks and batoids in the Tropical Eastern Pacific, differentiating between the endemic and non-endemic species. Species below the diagonal line are considered prone to local extinction.

**Figura 5.** Relación entre el tamaño corporal y el volumen de ocurrencia de tiburones y rayas residentes del Pacífico Oriental Tropical. Se distinguen las especies endémicas de las no endémicas. Las especies por debajo de la diagonal son identificadas como propensas a la extinción local.

sharks and batoids. These differences can be explained by different selective pressures acting on body size in these two groups. Batoids are flat and symmetric in shape and are restricted to the euphotic zone (except Raja velezi), thus showing a narrow depth range, so interspecific differences were not found for this variable. Considering the horizontal distribution (two-dimensional space), however, batoids present differences among them: benthic batoids (mostly small in size) are limited by the space they inhabit and find suitable conditions in which to live and survive, whereas pelagic batoids (larger in size) have higher dispersal and surface mobility capabilities and can increase their areas of occurrence. The preference of small species for certain habitats, the width of the continental shelf in the study area, and the higher dispersal and surface mobility capabilities of larger, pelagic batoids (Cortés 2004, Frisk 2010) are variables that influenced the differences found in the extent of occurrence relative to body size. Unlike the batoids, the streamlined body of sharks (except that of benthic sharks such as those of the family Heterodontidae) allows them great vagility and the ability to disperse and colonize new areas (Wilga and Lauder 2004), both latitudinally and bathymetrically. Consequently, studies of the distribution of batoids should consider their horizontal displacement, while those of sharks should consider the vertical (or depth) gradient and, thus, volume.

The positive relationship between body size and geographic range size found in this study for elasmobranchs has also been reported for stomatopods (Reaka 1980), for birds and terrestrial mammals (Brown and Maurer 1989), and for tamaño corporal en estos dos grupos. Las rayas tienen forma corporal aplanada y simétrica, y están restringidas a la zona eufótica (excepto Raja velezi) y presentan un intervalo de profundidad estrecho, por lo que las diferencias interespecíficas no se presentan en esta variable. Considerando la distribución horizontal (espacio bidimensional), las rayas presentan diferencias entre ellas: las rayas bentónicas (en su mayoría de tallas pequeñas) están limitadas por el espacio donde habitan y encuentran sus condiciones apropiadas para vivir y mantenerse, mientras que las especies pelágicas (de tamaños más grandes) pueden desplazarse ampliamente y así aumentar sus áreas de ocurrencia. La preferencia de las especies pequeñas por ciertos hábitats, el ancho de la plataforma continental del área estudiada y la mayor capacidad de dispersión y movilidad superficial de las rayas pelágicas más grandes (Cortés 2004, Frisk 2010) son variables que influyeron en las diferencias presentadas en la extensión de ocurrencia con respecto al tamaño corporal. A diferencia de las rayas, el cuerpo hidrodinámico de los tiburones (excepto las especies bentónicas como los tiburones de la familia Heterodontidae) les permite mayor vagilidad, así como la posibilidad de dispersarse y colonizar nuevas áreas (Wilga y Lauder 2004), tanto latitudinalmente como batimétricamente. Consecuentemente, los estudios sobre la distribución de rayas deberían considerar principalmente sus desplazamientos horizontales, mientras que en los de tiburones es indispensable considerar el gradiente vertical (o la profundidad) y por tanto el volumen.

Las relaciones positivas entre el tamaño corporal y la amplitud de distribución geográfica encontradas en este estudio para elasmobranquios han sido observadas en estomatópodos (Reaka 1980), en aves y mamíferos terrestres (Brown y Maurer 1989) y en peces (Taylor y Gotelli 1994, Pyron 1999, Macpherson 2003). Pyron (1999) encontró, además, que las especies más grandes ocupan mayor variedad de hábitats. En el presente estudio, la especie de tiburón más grande (Carcharodon carcharias) ocupó las tres zonas batimétricas (epi, meso y batipelágica) y presentó el intervalo más amplio de profundidad; sin embargo, la especie de tiburón más pequeña (Centroscyllium nigrum), que es una especie principalmente de aguas profundas, presentó el segundo intervalo más amplio de profundidad. La relación inversa, donde los animales grandes presentan menores intervalos de profundidad, ha sido encontrada en otros trabajos sobre elasmobranquios, y se ha correlacionado con los hábitos alimentarios de las especies (Smith y Brown 2002), mas no con los tipos de reproducción de las mismas (Goodwin et al. 2005). Aunque estos últimos autores no encontraron una relación significativa entre el tamaño corporal y el intervalo de profundidad de las especies de elasmobranquios, al igual que lo encontrado en este trabajo, las tendencias de dichas relaciones (negativa y positiva, respectivamente) sí difieren; esto se puede deber a un efecto de escala, ya que nuestro análisis está limitado espacialmente al POT, mientras que el de

| Table 2. Life history and demographic parameters of the shark (top) and batoid (bottom) species identified as prone to local extinction (based on the relationship between body size an  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| volume of occurrence), as well as their current threat status according to the International Union for Conservation of Nature (IUCN) Red List categories: NE = not evaluated, DD = dat   |
| deficient, LC = least concern, NT = near threatened, VU = vulnerable, and CR = critically endangered. (*) Species endemic to the Tropical Eastern Pacific. (-) Data not available.       |
| Tabla 2. Parámetros de historia de vida y demografía de las especies de tiburón (arriba) y raya (abajo) identificadas como propensas a la extinción local (con base en la relación tamañ |
| corporal y volumen de ocurrencia), así como su estatus actual de amenaza según la Lista Roja de la Unión Internacional para la Conservación de la Naturaleza (IUCN): NE = n              |
| evaluada, DD = datos deficientes, LC = preocupación menor, NT = casi amenazada, VU = vulnerable y CR = críticamente amenazada. (*) Especies endémicas del Pacífico Orienta               |
| Tropical. (–) Sin datos disponibles.                                                                                                                                                     |
|                                                                                                                                                                                          |

| evaluada, DD = datos deficientes,<br>Tropical. (–) Sin datos disponibles. | LC = preoc   | ıpación menor, NJ | r = casi amenaz | ada, VU = vul                      | nerable y CF | t = críticame | nte amenaza | da. (*) Esp | ecies endémi | icas del Pacífico | Oriental |
|---------------------------------------------------------------------------|--------------|-------------------|-----------------|------------------------------------|--------------|---------------|-------------|-------------|--------------|-------------------|----------|
| Species                                                                   | Maximum      | Mode of           | Size at         | Population                         | Size at mat  | urity (cm)    | Age at ma   | turity (yr) | Longevity    | Population        | IUCN     |
|                                                                           | size<br>(cm) | reproduction      | birth<br>(cm)   | growth rate (cm yr <sup>-1</sup> ) | Females      | Males         | Females     | Males       | (yr)         | trend             |          |
| Heterodontiformes<br>Heterodontus quoyi                                   | 107          | Oviparous         | I               | I                                  | I            | I             | I           | I           | I            | I                 | DD       |
| <b>Orectolobiformes</b><br>Ginglymostoma cirratum                         | 430          | Lecithotrophic    | 27–30 TL        | I                                  | 223–231      | 210–214       | 15-20       | 10–15       | I            | I                 | DD       |
| Lamniformes<br>Odontaspis ferox                                           | 410          | Lecithotrophic    | 100-110 TL      | I                                  | 300–350      | 200–250       | Ι           | I           | I            | Decreasing        | ΝŪ       |
| Carcharhiniformes                                                         |              |                   |                 |                                    |              |               |             |             |              |                   |          |
| Mustelus mento                                                            | 130          | Matotrophic       | 30 TL           | I                                  | 86–90        | 65-70         | Ι           | I           | I            | Decreasing        | ΝT       |
| Triakis maculata                                                          | 240          | Matotrophic       | 30–40 TL        | I                                  | I            | I             | Ι           | I           | I            | Decreasing        | ΝU       |
| Carcharhinus albimarginatus                                               | 300          | Matotrophic       | 63–81 TL        | I                                  | 160 - 200    | 160 - 190     | I           | I           | I            | I                 | ΝT       |
| Carcharhinus brachyurus                                                   | 325          | Matotrophic       | 55-67 TL        | 0.04                               | 227–244      | 206–235       | 19–20       | 13–19       | I            | I                 | ΝT       |
| Carcharhinus limbatus                                                     | 275          | Matotrophic       | 53-65 TL        | I                                  | 150–156      | 130–145       | 6–7         | 4–5         | 10           | I                 | ΝT       |
| Carcharhinus obscurus                                                     | 420          | Matotrophic       | 69–100 TL       | 1.9 - 4.3                          | 210–230      | 214–235       | 19          | 20–21       | 40–50        | Decreasing        | ΝU       |
| Carcharhinus porosus                                                      | 150          | Matotrophic       | 30–40 TL        | I                                  | 72–78        | 71            | 9           | 9           | 12           | I                 | DD       |
| Galeocerdo cuvier                                                         | 550          | Matotrophic       | 51–90 TL        | I                                  | 250–350      | 226–290       | 6           | 6           | 28           | I                 | LΝ       |
| Negaprion brevirostris                                                    | 340          | Matotrophic       | 60–65 TL        | I                                  | 235          | 225           | 12–13       | 12-13       | 30           | Ι                 | NT       |
| Sphyrna zygaena                                                           | 500          | Matotrophic       | 50–63 TL        | Ι                                  | 265          | 250-260       | Ι           | Ι           | 20           | Decreasing        | VU       |
| Pristiformes                                                              |              |                   |                 |                                    |              |               |             |             |              |                   |          |
| Pristis sp.                                                               | 650          | Lecithotrophic    | 70–80 TL        | 0.08-0.13                          | 320          | 320           | I           | I           | 40–70        | Decreasing        | CR       |
| Torpediniformes                                                           |              |                   |                 |                                    |              |               |             |             |              |                   |          |
| Narcine leoparda*                                                         | 36           | Lecithotrophic    | 4-5 TL          | I                                  | 20–23        | 14–18         | I           | I           | I            | Decreasing        | NT       |
| Myliobatiformes                                                           |              |                   |                 |                                    |              |               |             |             |              |                   |          |
| Urobatis tumbescensis*                                                    | 41           | Matotrophic       | Ι               | I                                  | I            | I             | I           | I           | I            | Ι                 | DD       |
| Urotrygon simulatrix*                                                     | 15           | Matotrophic       | I               | I                                  | I            | I             | I           | I           | I            | Decreasing        | ΝU       |
| Urotrygon serrula                                                         | 18.7         | Matotrophic       | I               | I                                  | I            | I             | I           | I           | I            | I                 | NE       |
| Myliobatis californica                                                    | 180          | Matotrophic       | 22–35 DW        | I                                  | 88           | 60            | 5           | 2–3         | 25           | Decreasing        | ГC       |
| Pteromylaeus asperrimus*                                                  | 79           | Matotrophic       | I               | I                                  | I            | I             | I           | I           | I            | I                 | DD       |
| Manta birostris                                                           | 800          | Matotrophic       | 120 DW          | I                                  | 500-550      | 450–500       | I           | I           | >20          | I                 | NT       |
| Mobula munkiana*                                                          | 200          | Matotrophic       | 35–36 DW        | I                                  | 87           | 97            | I           | I           | I            | I                 | LΝ       |

fish (Taylor and Gotelli 1994, Pyron 1999, Macpherson 2003). Pyron (1999) also observed that larger species occupy a greater variety of habitats. In this study, the largest shark species (Carcharodon carcharias) occupied the three bathymetric zones (epi-, meso-, and bathypelagic) and showed the widest depth range; however, the smallest shark (Centroscyllium nigrum), a species that primarily inhabits deep waters, had the second widest depth range. The inverse relationship, where large animals have smaller depth ranges, has been recorded in other studies of elasmobranchs, and it has been correlated with the feeding habits of the species (Smith and Brown 2002) but not with their modes of reproduction (Goodwin et al. 2005). Although the latter authors did not find a significant relationship between body size and depth range of elasmobranch species, as in this study, the tendencies of these relationships (negative and positive, respectively) do differ; this can be due to a scale effect because our analysis was spatially limited to the TEP, whereas that of Goodwin et al. (2005) did not consider the geographic location of the species.

The higher species richness of elasmobranchs in shallower waters (euphotic zone, <200 m) can be attributed to the greater environmental variability in this zone, as has been suggested by Stevens (1989). This environmental variability acts in favour of species richness, maybe not directly, but through all the processes that occur in that bathymetric gradient (incidence and amount of light, currents, thermoclines, upwelling, etc.).

The non-significant linear relationship between body size and volume of occurrence, especially for batoids, does not imply that there is no other relationship between these variables, as suggested by Gaston and Blackburn (1996a). According to these authors, the interspecific relationship between these variables is more complex and they propose a triangular pattern, which is clearer at global spatial scales. In our analysis, the elasmobranchs from the TEP presented this pattern, as has been observed for other terrestrial animals (Brown and Maurer 1987, 1989; Pyron 1999). The constraint line of this relationship suggests that minimum volume of occurrence increases with body size; species falling below this line indicate that their distribution size is in the process of increasing or that they are on a trajectory toward extinction (Gaston and Blackburn 1996a).

Considering the species located below the constraint line, it can be said that, as a group, sharks (33% of the species below the line, none endemic) are more vulnerable to stochastic effects or human impacts in the TEP than batoids (20% of the species below the line, five endemic). These 22 species belong to diverse orders and present different sizes, but they all inhabit the euphotic zone (though *Carcharhinus obscurus* and *Odontaspis ferox* also inhabit the mesopelagic zone) and most of them are coastal fish (68.2%). As a result of these latter two characteristics, these species may present a greater probability of being threatened by extinction because of the human impacts to which they are exposed (e.g., Goodwin *et al.* (2005) no considera la ubicación geográfica de las especies.

La mayor riqueza de elasmobranquios en las zonas menos profundas (zona eufótica, <200 m) puede atribuirse a la mayor variabilidad ambiental en esta zona, tal como ha sido sugerido por Stevens (1989). Dicha variabilidad ambiental actúa a favor de la riqueza de especies, si no directamente, sí por todos los procesos que se presentan en el gradiente batimétrico (incidencia y cantidad de luz, corrientes, termoclinas, surgencias, etc).

La relación lineal no significativa entre el tamaño corporal y el volumen de ocurrencia, especialmente para rayas, no implica que no exista otro tipo de relación entre estas variables, tal como lo plantean Gaston y Blackburn (1996a). Estos autores sugieren que la relación interespecífica entre estas variables es más compleja y proponen un patrón triangular, que se da de manera más clara a escalas espaciales globales. En nuestro estudio, los elasmobranquios del POT presentaron dicho patrón, tal como ha sido observado en otros animales terrestres (Brown y Maurer 1987, 1989; Pyron 1999). La diagonal de esta relación sugiere que el volumen de ocurrencia mínimo se incrementa con el tamaño corporal; las especies que caen por debajo de esta línea indican que el tamaño de su distribución está en proceso de incrementarse o que están en una trayectoria hacia la extinción (Gaston y Blackburn 1996a).

Considerando las especies que se ubican por debajo de la diagonal, podría decirse que, como grupo, los tiburones (33% de las especies debajo de la diagonal, ninguna endémica) son más vulnerables a los impactos humanos o efectos estocásticos en el POT que las rayas (20% de las especies debajo de la diagonal, cinco endémicas). Estas 22 especies pertenecen a diversos órdenes y presentan diversas tallas; sin embargo, todas habitan en la zona eufótica (excepto Carcharhinus obscurus y Odontaspis ferox, que habitan también en la zona mesopelágica) y la mayoría de ellas son de hábitos costeros (68.2%). Estas dos características pueden llevar a las especies a presentar una mayor probabilidad de ser amenazadas de extinción por los impactos humanos (e.g., tala de bosques de manglar, pesca) a los que se ven expuestas y porque tienden a disminuir su amplitud de distribución geográfica (Gaston y Blackburn 1996a). Varias de estas especies interaccionan con más de una pesquería y son capturadas en distintos estados de desarrollo (e.g., Carcharhinus limbatus, Galeocerdo cuvier), lo que aumenta su vulnerabilidad.

Todas las especies que se encuentran por debajo de la diagonal (excepto *Urotrygon serrula*) están incluidas en la Lista Roja de Especies Amenazadas de la IUCN (www.redlist.org), bajo categorías que van desde datos deficientes (DD) hasta críticamente amenazadas (CR) (tabla 2). De manera particular, las dos especies de rayas que se ubicaron muy por debajo de la línea, *Pristis* sp. y *Manta birostris*, presentan tallas máximas grandes pero bajos volúmenes de ocurrencia, y están catalogadas como CR (Cook y Compagno 2005) y casi pollution, clearing of mangrove forests, fishing) and because their geographic range size tends to decrease (Gaston and Blackburn 1996a). Several of these species interact with more than one fishery and are captured in different stages of development (e.g., *Carcharhinus limbatus*, *Galeocerdo cuvier*), their vulnerability to human impacts thus increasing.

All the species that are below the constraint line (except Urotrygon serrula) are included in the IUCN Red List of Threatened Species (www.redlist.org), in diverse categories from data deficient (DD) to critically endangered (CR) (table 2). The two batoid species located considerably below the line, Pristis sp. and Manta birostris, show large maximum sizes but low volumes of occurrence, and are respectively catalogued as CR (Cook and Compagno 2005) and as near threatened (NT) (Marshall et al. 2006). The differences between these two species (in volume of occurrence and threat category) can be explained considering the reductions in their range of occurrence: sawfish (Pristis sp.) are found in coastal areas, in shallow and muddy bottoms of brackish and freshwater habitats, where they are impacted by human activities through deforestation and aquaculture (increasingly restricting their space) or targeted fishing (reducing their stock sizes), while manta rays (M. birostris) occur in pelagic habitats, in coastal and oceanic waters, where stocks are subject to fishing pressure (McEachran and di Sciara 1995, Robertson and Allen 2008). Life history traits, such as late maturation and low fecundity, also make these species susceptible to overfishing (Holden 1974).

Life history traits of species, which are related to body size and essential for understanding their evolutionary processes and trends (Stearns 1992), are therefore important in these macroecological relationships. Age at maturity, longevity, and birth size (analyzed as the percentage of the maximum size of the species) varied among the species that fell below the constraint line, but all species matured at larger sizes. Moreover, very low population growth rates and decreasing population trends were observed (table 2). Regarding reproduction, García et al. (2008) reported that matrotrophic (placental or uterine milk) viviparous species are more vulnerable than lecithotrophic (vitelline sac) viviparous or oviparous species. In this case, species such as Sphyrna zygaena and Galeocerdo cuvier and those of the genus Carcharhinus and Urotrygon show matrotrophic reproduction, another condition that impacts their status as high-risk species in the TEP. There is, however, no causal relationship between volume of occurrence and reproductive mode, since the depth ranges do not correlate with the reproductive modes (Goodwin et al. 2005); consequently, the analysis of volume of occurrence vs vulnerability cannot be interpreted based on the effect of the reproductive modes to determine whether the species fall below or above the constraint line.

Both the intrinsic characteristics of the animals (in this case life history traits) and their extrinsic environment (related to the habits of the species) interact to explain the amenazada (Marshall et al. 2006), respectivamente. Las diferencias entre estas dos especies (en volumen de ocurrencia y categoría de amenaza) pueden ser explicadas considerando las reducciones en su extensión de ocurrencia: el guacapá (Pristis sp.) es una especie que habita en áreas costeras, en fondos someros y fangosos de aguas salobres y dulces, en áreas que han sido impactadas por acciones humanas tanto por deforestación o acuicultura (restringiendo cada vez más su espacio) como por pesca dirigida (reduciendo sus tamaños poblacionales); por otro lado, la mantarraya (M. birostris) se distribuye en hábitats pelágicos, en aguas costeras y oceánicas, y la causa principal de su disminución poblacional es la presión pesquera (McEachran y di Sciara 1995, Robertson y Allen 2008). La vulnerabilidad a la pesca de estas especies está relacionada además con rasgos de historia de vida, como maduración tardía y bajas fecundidades (Holden 1974).

De esta forma, los rasgos de historia de vida de las especies, que están relacionados al tamaño corporal y son fundamentales para entender los procesos y las tendencias evolutivas de las especies (Stearns 1992), son importantes en estas relaciones macroecológicas. La edad de madurez, la longevidad y las tallas de nacimiento (analizadas como el porcentaje de la talla máxima de la especie) fueron muy variables entre las especies que quedaron por debajo de la diagonal, pero todas las especies maduraron a tallas más grandes. Además, los valores de la tasa de incremento poblacional encontrados fueron muy bajos y las tendencias poblacionales fueron todas decrecientes (tabla 2). Respecto a la reproducción, García et al. (2008) encontraron que las especies de reproducción vivípara matotrófica (placenta o leche uterina) son más vulnerables que las ovíparas o vivíparas lecitotróficas (saco vitelino). En este caso, las especies como Sphyrna zygaena y Galeocerdo cuvier, y las especies de los géneros Carcharhinus y Urotrygon presentan reproducción matotrófica, una condición más que influye en su estatus como especies de mayor riesgo dentro del POT. Sin embargo, no existe causalidad en la relación del volumen de ocurrencia vs modos de reproducción, dado que los intervalos de profundidad no se correlacionan con dichos modos reproductivos (Goodwin et al. 2005); por tanto, el análisis de volumen de ocurrencia vs vulnerabilidad no se puede interpretar con base en el efecto de los modos reproductivos para determinar si una especie se encuentra o no por debajo de la diagonal.

Tanto las características intrínsecas de los animales (en este caso rasgos de historia de vida) como su ambiente extrínseco (relacionado con los hábitos de las especies) interaccionan para explicar la relación entre la amplitud de distribución y el tamaño corporal, y permiten explicar, en parte, la mayor vulnerabilidad de las especies bajo la diagonal.

La combinación de tamaño corporal grande y amplitud de distribución pequeña parece ser un buen predictor de especies propensas a la extinción (Gaston y Fuller 2009). Aunque todas las especies de tiburones identificados como propensos relationship between body size and geographic range size, and help to explain, in part, the greater vulnerability of the species under the constraint line.

The combination of large body size and small geographic range size seems to be a good predictor of species prone to extinction (Gaston and Fuller 2009). Even though all the shark species identified as vulnerable to extinction in this study show wide geographic range sizes in other regions of the world (e.g., Carcharhinus albimarginatus, C. limbatus, Sphryna zygaena), their volume of occurrence in the TEP is low. This result can be explained by the fact that none of these species is endemic to the TEP. They migrated to this region through ancient marine connections such as the Tethys Sea and after the emersion of the Panama isthmus they were isolated there (Musick et al. 2004); thus, the populations of these species are isolated by different geographical barriers such as the Central Pacific Barrier and the Central American Isthmus (Robertson and Allen 2008), thereby increasing the risk of local extinction. In this case, endemism does not seem to influence the geographic rangebody size relationship and vulnerability of the sharks. In the case of the batoids, however, 55% of the species below the constraint line were endemic, indicating that greater attention has to be paid to the conservation of these populations in the TEP.

Despite the limited biogeographic information available for TEP elasmobranchs, this study is a first attempt to obtain knowledge of the macroecological patterns of sharks and batoids in terms of the relationship between body size and other spatial variables (depth, and extent and volume of occurrence). Knowledge of the relationship between body size and geographic range size of species at different spatial scales is useful for assessing their threat status, according to evaluation criteria proposed by IUCN (2001) such as area of occurrence and distribution range. In the regional context (TEP), this study contributes useful information for the shark and batoid conservation measures being formulated and implemented in the eastern Pacific basin, strengthening the criteria for the selection of priority and prone to extinction species.

## ACKNOWLEDGEMENTS

Thanks are due to F Zapata for his valuable comments during the course of this work. AFN and PAM acknowledge the receipt of scholarships from Universidad del Valle and COLCIENCIAS for their master's and doctoral studies, respectively. Two anonymous reviewers provided valuable comments on the first version of the paper.

English translation by Christine Harris.

#### REFERENCES

a la extinción en este estudio presentan amplitudes de distribución geográfica grandes en otras zonas geográficas del mundo (e.g., Carcharhinus albimarginatus, C. limbatus, Sphryna zygaena), su volumen de ocurrencia en el POT es bajo. Este resultado se podría deber a que ninguna de estas especies es endémica del POT. Se sabe que migraron a esta zona a través de las antiguas conexiones marinas como el mar de Tethys, quedando aisladas en esta zona después de la emersión del istmo de Panamá (Musick et al. 2004); por tanto, las poblaciones de estas especies se encuentran aisladas por diferentes barreras geográficas como la barrera del Pacífico central y el istmo centroamericano (Robertson y Allen 2008), lo que aumenta el riesgo de extinción local de las mismas. En este caso, el endemismo parece no tener influencia en la relación tamaño corporal-distribución geográfica y vulnerabilidad de tiburones. En el caso de las rayas, el 55% de las especies bajo la diagonal fueron endémicas. Esta condición sugiere una mayor atención, en términos de conservación, sobre las poblaciones de rayas en el POT.

Aunque la información biogeográfica de elasmobranquios en el POT es aún limitada, este trabajo es un primer acercamiento al conocimiento de los patrones macroecológicos de elasmobranquios en cuanto a la relación del tamaño corporal con variables espaciales (profundidad, extensión y volumen). El conocimiento sobre las relaciones entre el tamaño corporal y la amplitud de distribución geográfica de las especies a diferentes escalas espaciales puede ser útil para la evaluación de los estados de amenaza de las mismas, según algunos criterios de evaluación de la IUCN (2001) como el área de ocupación y la extensión de la distribución. En el contexto regional (POT), este trabajo contribuye con información útil para la formulación e implementación de los planes de acción para la conservación y el manejo de tiburones y rayas en la cuenca del Pacífico oriental, lo que fortalecerá los criterios para la selección de especies prioritarias y que se muestran como vulnerables a la extinción.

#### **AGRADECIMIENTOS**

Los autores agradecen a F Zapata sus valiosos consejos durante el desarrollo de este trabajo. AFN y PAM agradecen a la Universidad del Valle y a COLCIENCIAS la financiación de sus estudios de maestría y doctorado, respectivamente. Dos revisores anónimos hicieron valiosos aportes a la primera versión de este manuscrito.

Allen G, Robertson DR. 1998. Peces del Pacífico Oriental Tropical. Crawford House Press, Bathurst, 327 pp.

Bussing WA, López M. 1983. Peces demersales y pelágicos costeros del Pacífico de Centro América meridional. Escuela de Biología CIMAR- Universidad de Costa Rica, San José, 161 pp.

Brown JH, Maurer BA. 1987. Evolution of species assemblages: Effects of energetic constraints and species dynamics on the diversification of the American avifauna. Am. Nat. 130: 1–17.

Brown JH, Maurer BA. 1989. Macroecology: The division of food and space among species on continents. Science 243: 1145–1150.

- Brown JH, Nicoletto PF. 1991. Spatial scaling of species composition: Body masses of North American land mammals. Am. Nat. 138: 1487–1512.
- Brown JH, Stevens GC, Kaufman DM. 1996. The geographic range: Size, shape, boundaries and internal structure. Annu. Rev. Ecol. Syst. 27: 597–623.
- Castro-Aguirre JL, Espinosa H. 1996. Listados faunísticos de México. VII. Catálogo sistemático de las rayas y especies afines de México. Universidad Nacional Autónoma de México, México, 90 pp.
- Chirichigno N, Cornejo RM. 2001. Catálogo comentado de los peces del Perú. IMARPE, Callao, 314 pp.
- Compagno LJV, Krupp F, Schneider W. 1995. Tiburones. In: Fischer W, Krupp F, Schneider W, Sommer C, Carpenter K, Niem V (eds.), Guía para la Identificación de Especies para los Fines de la Pesca, Pacífico Centro Oriental. FAO, Rome, pp. 648–743.
- Cook SF, Compagno LJV. 2005. Pristis pristis. In: IUCN Red List of Threatened Species. Version 2010.1: <www.iucnredlist.org>. Downloaded on 17 April 2010.
- Cortés E. 2004. Life history patterns, demography, and population dynamics. In: Carrier JF, Musik JA, Heithaus M (eds.), Biology of Sharks and their Relatives. CRC Press, Boca Raton, Florida, pp. 449–469.
- Espinosa H, Castro-Aguirre JL, Huidrobo L. 2004. Listados faunísticos de México. IX. Catálogo sistemático de tiburones. Universidad Nacional Autónoma de México, México, 109 pp.
- Frisk MG. 2010. Life history strategies of batoids. In: Carrier JF, Musik JA, Heithaus M (eds.), Sharks and their Relatives. II. Biodiversity, adaptive physiology, and conservation. CRC Press, Boca Raton, Florida, pp. 283–318.
- Froese R, Pauly D. 2009. FishBase. World Wide Web electronic publication, http://www.fishbase.org.
- García VB, Lucifora LO, Myers RA. 2008. The importance of habitat and life history to extinction risk in sharks, skates, rays and chimaeras. Proc. R. Soc. B. 275: 83–89.
- Gaston KJ. 1991. How large is a species' geographic range? Oikos 61: 434–438.
- Gaston KJ. 1996. Species-range-size distributions: Patterns, mechanisms and implications. Trends Ecol. Evol. 11: 197–201.
- Gaston KJ, Blackburn TM. 1996a. Conservation implications of geographic range size-body size relationships. Conserv. Biol. 10: 638–646.
- Gaston KJ, Blackburn TM. 1996b. Range size-body size relationships: Evidence of scale dependence. Oikos 754: 479–485.
- Gaston KJ, Fuller RA. 2009. The sizes of species' geographic range. J. Appl. Ecol. 46: 1–9.
- Goodwin NB, Dulvy NK, Reynolds JD. 2005. Macroecology of live-bearing in fishes: Latitudinal and depth range comparisons with egg-laying relatives. Oikos 110: 209–218.
- Holden MJ. 1974. Problems in the rational exploitation of elasmobranch populations and some suggested solutions. In: Harden-Jones FR (ed.), Sea Fisheries Research. John Wiley and Sons, New York, pp. 117–137.
- IUCN 2001. Categorías y Criterios de la Lista Roja de la IUCN. Versión 3.1. Comisión de Supervivencia de Especies de la IUCN. Gland, 33 pp.
- Jiménez-Prado P, Béarez P. 2004. Marine fishes of continental Ecuador. IMBIOE/NAZCA/IFEA, Quito, 393 pp.
- Lawton JH. 1996. Patterns in ecology. Oikos 75: 145-147.

- Macpherson E. 2003. Species range size distributions for some marine taxa in the Atlantic Ocean. Effect of latitude and depth. Biol. J. Linn.Soc. 80: 437–455.
- Marshall A, Ishihara H, Dudley SFJ, Clark TB, Jorgensen S, Smith WD, Bizzarro JJ. 2006. *Manta birostris*. In: IUCN Red List of Threatened Species. Version 2010.1: <www.iucnredlist.org>. Downloaded on 17 April 2010.
- Massay S. 1983. Revisión de la lista de los peces marinos del Ecuador. Bol. Cient. Téc. Inst. Nac. Pesca 4: 1–113.
- McEachran JD, di Sciara N. 1995. Peces batoideos. In: Fischer W, Krupp F, Schneider W, Sommer C, Carpenter K, Niem V. (eds.), Guía para la Identificación de Especies para los Fines de la Pesca, Pacífico Centro Oriental. FAO, Rome, pp. 746–792.
- Mejía-Falla PA, Navia AF, Mejía-Ladino LM, Acero A, Rubio EA. 2007. Tiburones y rayas de Colombia (Pisces Elasmobranchii): Lista actualizada y comentada. Bol. Invest. Mar. Cost. 36: 111– 149.
- Mora C, Robertson DR. 2005. Causes of latitudinal gradients in species richness: A test with fishes of the tropical eastern Pacific. Ecology 86: 1771–1782.
- Musick JA, Harbin MM, Compagno LJV. 2004. Historical zoogeography of the Selachii. In: Carrier JF, Musik JA, Heithaus M (eds.), Biology of Sharks and their Relatives. CRC Press, Boca Raton, Florida, pp. 33–78.
- Primack RB, Ros J. 2002. Introducción a la Biología de la Conservación. Editorial Ariel, Barcelona, 371 pp.
- Pyron M. 1999. Relationships between geographical range size, body size, local abundance, and habitat breadth in North American suckers and sunfishes. J. Biogeogr. 26: 549–558.
- Reaka ML. 1980. Geographic range, life history patterns and body size in a guild of coral-dwelling mantis shrimps. Evolution 34: 1019–1030.
- Robertson DR, Allen GR. 2008. Shorefishes of the Tropical Eastern Pacific online information system. Version 1.0. Smithsonian Tropical Research Institute, Balboa, Panama, www.neotropicalfishes.org/sftep, www.stri.org/sftep.
- Rosenfield JA. 2002. Pattern and process in the geographical ranges of freshwater fishes. Glob. Ecol. Biogeogr. 11: 323–332.
- Roy K, Martien KK. 2001. Latitudinal distribution of body size in north-eastern Pacific marine bivalves. J. Biogeogr. 24: 485–493.
- Santana-Morales O, Castillo-Geniz JL, Sosa O, Rodríguez-Medrano C. 2004. Catalogo de tiburones, rayas y quimeras (Chondrichthyes) que habitan en las aguas del norte del Golfo de California. Reporte Técnico, Laboratorio de Ecología Pesquera, CICESE, 119 pp.
- Smith KF, Brown JH. 2002. Patterns of the diversity, depth range, and body size among pelagic fishes along a gradient of depth. Glob. Ecol. Biogeogr. 11: 313–322.
- Stearns SC. 1992. The Evolution of Life Histories. Oxford Univ. Press, Oxford, 249 pp.
- Stevens GC. 1989. The latitudinal gradient in geographical range: How so many species coexist in the tropics. Am. Nat. 133: 240–256.
- Taylor CM, Gotelli NJ. 1994. The macroecology of Cyprinella: Correlates of phylogeny, body size and geographic range. Am. Nat. 144: 549–569.
- Wilga CD, Lauder GV. 2004. Three-dimensional kinematics and wake structure of the pectoral fins during locomotion in leopard sharks. J. Exp. Biol. 203: 2261–2278.

Received April 2010; accepted May 2011.